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Lecture 10 – Advanced image registration

Klein et al 2010. (IEEE Trans Med Img)

https://elastix.lumc.nl
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What can you do after today?
n Describe difference between a pixel and voxel
n Choose a general image-to-image registration pipeline 
n Apply 3D geometrical affine transformations
n Define coordinate system of an object for 3D rotation 
n Use the Homogeneous coordinate system to combine transformations
n Compute a suitable intensity-based similarity metric given the image 

modalities to register
n Compute the normalized correlation coefficient (NNC) between two 

images
n Compute Entropy
n Describe the concept of iterative optimizers
n Compute steps in the gradient descent optimization algorithm
n Apply the pyramidal principle for multi-resolution strategies
n Select a relevant registration strategy: 2D to 3D, Within- and between 

objects and moving images
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Mount Everest - Himalayas
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Image Registration pipeline
n The input images

– Fixed image: Reference image
– Moving image: Template image
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Image volumes
n Image slice: 2D (NxM) matrix of pixels
n Image volumes: 3D (NxMxP) matrix of voxels

– An element is a volume pixel i.e. voxel
n Pixel vs voxel intensity

– Integrated information within an area or volume

2D Slice 3D volume
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3D image viewing
n Three orthogonal views

– Fine structural details at slice level
– Hard to get 3D surface insight

n Rendering of surfaces
– Surface insight
– Limited types of surfaces to visualise

CoronalSagittal Axial
Slices three orthogonal views

A
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Coronal

Sag
itt

al

3D rendering
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3D image viewing
n Three orthogonal views

– Fine structural details at slice level
– Hard to get 3D surface insight

n Rendering of surfaces
– Surface insight
– Limited types of surfaces to visualise

CoronalSagittal Axial
Slices three orthogonal views
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3D rendering

www.dreamstime.com/illustration/truck-top-view.html
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Image volumes
n Stacked slices: 2D to 3D

– Object cut into slices, imaged and stacked
– Still pixels – not voxel

n Registration challenges
– Geometrical distortions between slices 3D volume
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Image volumes
n Intact sample

– No sample cutting

n Registration challenges:
– Stacking 3D volumes

2D Slice 3D volume

Synchrotron x-ray imaging
Tissue sample 1mm

75 nm isotropic resolution voxels

MRI
Whole brain 

1 mm isotropic resolution voxels

Stacked 3D volumes

Andersson et al, 2020 (PNAS)
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Image volumes
n Intact sample

– No sample cutting

n Registration challenges:
– Multi image resolution: Fit Region-of-interest image to whole object image

3D volume

Rotating sample in x-ray tomography 

The inspection of a glued joint of a car body

CT of ROI
(non-destructive)

Region of 
interest (ROI)

Microscope
(destructive)CT scanning 

Simon et al, 2006 (ECNDT)
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Image Registration pipeline
n Geometrical transformations
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Geometric transformations
n Translation
n Rotation
n Scaling
n Shearing

Fixed image (IF) Moving image (IM)

!𝑇 = argmin
!
∁(𝑇; 𝐼", 𝐼#)

(Reference image) (Template image)
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Translation 2D vs 3D
n The image is shifted

– 2D: Inspect one slice plan
– 3D:Inspect three slice plans

∆𝑥
∆𝑦 = 60

20

2D: (x,y)-plan

(y,z) -plan (x,z)-plan (x,y)-plan

∆𝑥
∆𝑦
∆𝑧

= −
60
20
15

3D: (x,y,z)-plans

∆𝑧
∆𝑥

∆𝑦

z

Y

x



DTU Compute

2025Image Analysis – 0250315 DTU Compute, Technical University of Denmark

Rotation 3D
n The image is rotated around an origin (e.g. the centre-of-mass)
n Rotate the object around three axis hence three angles.

– Inspect all three views to identify a rotation
Original

Rotated: 27 degree counter-clockwise around only the y-axis

z-axis
x-axis

y-axis

z

Y

x
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3D Rotation coordinate system
n Three element rotations round the axes of the coordinate system
n Pitch, Yaw and Roll

– Note: Definition of the coordinate system is object specific

Rotation rules
– Counter clock-wise rotations: Right-hand rule (as in figures) ß We use here
– Clock-wise rotations: Left-hand rule

The principal axes of an aircraft 
according to the air norm DIN 9300

y

x
z

https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://en.wikipedia.org/wiki/Deutsches_Institut_f%C3%BCr_Normung
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3D Rotation coordinate system
n Axis-Angle representation
n Three composed element rotations

– Angles: 𝝰,𝝱, 𝝲
– Counter clock-wise rotations (Right-hand rule)

n The order matters 
– Several Euler-angle conventions exist

n Remember: Know your origin!

PitchRoll Yaw

Axis-Angle representation

y

x z

Rx
Rz

Ry
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Euler convention - example
n The intrinsic ZXZ-Euler angle convention (uses the right-hand rule):

– 𝝰: Around the z-axis. Defines the line of nodes (N)
– 𝝱: Around the new X-axis defined by N
– 𝝲: Around the new Z-axis from N

n The order of coordinate system rotations:
– Rotation order around the:
– z-axis: Initial: Original frame (x,y,z): 𝝰
– New X-axis: First coordinate system rotation (X,Y,Z): 𝝱
– New Z-axis: Second coordinate system rotation (X,Y,Z):𝝲

wikipedia.org/wiki/Euler_angles

𝐴! = 𝑅"(𝛾) ∗ 𝑅#(𝛽) ∗ 𝑅"(𝛼)
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Euler convention – example for a flight
n The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
n Use defined coordinate system for the object
n Rotation order of a flight:  

– Yaw: rotation around the Z-axis
– Pitch: Rotation around the Y-axis
– Roll: Rotation around the X-axis

𝐴! = 𝑅$(𝛾) ∗ 𝑅%(𝛽) ∗ 𝑅#(𝛼) z

Rz

y

x
Rx

Ry
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Euler convention – example for a head
n The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
n Use defined coordinate system for the object
n Rotation order of a human head:  

– Yaw: rotation around the Z-axis
– Pitch: Rotation around the X-axis
– Roll: Rotation around the Y-axis

𝐴! = 𝑅$(𝛾) ∗ 𝑅#(𝛽) ∗ 𝑅%(𝛼)
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Quiz 1: Affine 3D transformation

A) 6
B) 5
C) 16
D) 12
E) 3

How many parameters?

SOLUTION:

Translation: P=3

Rotation: p=3

Scaling: p=3

Shearing: p=3
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Scaling in 3D
n The size of the image is changed
n Three parameters:

– X-scale factor, Sx
– Y-scale factor, Sy
– Z-scale factor, Sz

n Isotropic scaling: 

A =
𝑆𝑥 0 0
0 𝑆𝑦 0
0 0 𝑆𝑧

y

z 𝐴 =
0.5 0 0
0 0.5 0
0 0 0.5
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Shearing in 3D
n Pixel shifted horizontally or/and vertically
n Three parameters

𝐴 =
1 𝑆𝑦𝑥 𝑆𝑧𝑥
𝑆𝑥𝑦 1 𝑆𝑦𝑧
𝑆𝑥𝑧 𝑆𝑦𝑧 1

y

z

Shearing (z,y)-plan
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Combining transformations

Translation:

Rotations,
Scaling, 
Shear:

𝑥′
𝑦′
𝑧′

	= 𝐴
𝑥
𝑦
𝑧

𝑥′
𝑦′
𝑧′

=
∆𝑥
∆𝑦
∆𝑧

+
𝑥
𝑦
𝑧

n Translation is a summation i.e. 
P’=A+P

n Rotation, Scale, Shear are 
multiplications i.e. P’=A*P

n Wish: To combine 
transformations via 
multiplications:

n Not possible with AT

𝐴 = 𝐴! ∗ 𝐴𝑅 * 𝐴$%&'(* 𝐴$
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Homogeneous coordinates
n Projective geometry

– Used in computer vision

n Adds an extra dimension to vector, 
W:

n W scales the x, y and z dimensions
n x,y,z are “correct” when W=1
n How does it work?

Cartesian coordinates:

Homogeneous coordinates:

𝑥′
𝑦′
𝑧′

	= 𝐴
𝑥
𝑦
𝑧

𝑥′
𝑦′
𝑧′
𝑤

	= 𝐴

𝑥
𝑦
𝑧
𝑤

𝑥, 𝑦, 𝑧, 𝑤
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Homogeneous coordinates

n Euclidean geometry:
– A point is (x,y)
– A 2D image
– Cartesian coordinates

www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-

projective-geometry/
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Homogeneous coordinates

n Euclidean geometry: 
– A point is (x,y)
– A 2D image
– Cartesian coordinates

n Projective geometry: 
– A point is (x,y,W)
– “Projective space” adds an extra 

projective dimension, W
– Changing W scale factor:

§ No change to the point in 
projective space

§ Changing perspective/depth
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Homogeneous coordinates
n A point in projective space is 

(x,y,W)
– Its corresponding Euclidean point is 

(x/W,y/W) 

n Increasing W (the same x and y)
– The projected point appear closer 

to the origin
– The object appear smaller (further 

away)

n Scaling to a new depth W’
– Adjusting the point using a scale 

factor is W’/W i.e., new 
distance/old distance:
(x*(W’/W), y*(W’/W), W’))

n When W or W’ = 1
– a projective coordinate (x,y,1) 

corresponds directly to Euclidean 
point (x,y)

W’
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Homogeneous coordinates

Example:
n Camara:

– 3 m away from the image, W=3
– The dot on the image is at (15,21)

n The projective coordinate point 
is said to be
– (15, 21, 3)
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Quiz 2: Homogeneous coordinates
A camara is placed at distance 
of 3 meter away from the image 
and the dot has the projective 
coordinate of (15,21,3).
Now we move the camara closer 
to the image i.e., 1 m away. 
What is the new projective 
coordinate?

A) (5,7,1)
B) (15,21,3)
C) (45,63,1)
D) (5,7,0.33)
E) (0,0,0)

SOLUTION:

We move closer to the image i.e. W’ = 1
which scales with factor (1/3) the projective 
point at W=3 accordingly:

(15*(1/3),21*(1/3),1)=(5,7,1)
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Translation transformation as a matrix

Translation:
𝑥′
𝑦′
𝑧′

=
𝑥
𝑦
𝑧
+

∆𝑥
∆𝑦
∆𝑧

𝑤ℎ𝑒𝑟𝑒	𝐴& =
1
0
0
0

	 0
	 1
	 0
	 0

	 0
	 0
	 1
	 0

	 ∆𝑥
	 ∆𝑦
	∆𝑧
	1

𝑥′
𝑦′
𝑧′
𝑊

=

𝑥
𝑦
𝑧
𝑊

+

∆𝑥
∆𝑦
∆𝑧
𝑊

𝑥′
𝑦′
𝑧′
𝑊

= 𝐴&

𝑥
𝑦
𝑧
𝑊

or

In Projective space

n Geometrical transformations
– Use Homogeneous coordinates
– Set W=1 we ‘covert’ 3D à 4D space
– Translation transformation expressed 

as a matrix AT

In Euclidian space
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Transformations in Projective space
Translation:

Rotations (right-hand rule):
- x=pitch
- y=roll
- z=yaw

Affine transformation:

Scaling:

𝑅! =
1
0
0
0

	 0
	 cos(𝛼)
sin(𝛼)
	 0

	 0
	 −sin(𝛼)	
cos(𝛼)
	 0

	 0
	 0
	0
	1

𝐴" =
𝑆𝑥
0
0
0

0
𝑆𝑦
0
0

0
0
𝑆𝑧
0

	0
	0
	0
	1

𝐴 = 𝐴9 ∗ (𝑅:* 𝑅; ∗ 𝑅<) * 𝐴:* 𝐴=

𝐴# =

1
𝑆𝑥𝑦
𝑆𝑥𝑧
0

	 𝑆𝑥𝑦
1
𝑆𝑦𝑧
0

	𝑆𝑥𝑧
	𝑆𝑦𝑧
1
0

	0
	0
	0
	1

Shear:

Rigid

𝐴$ =
1
0
0
0

	 0
	 1
	 0
	 0

	 0
	 0
	 1
	 0

	 ∆𝑥
	 ∆𝑦
	∆𝑧
	1

𝑅% =

cos(𝛽)
0

−sin(𝛽)
0

	 0
	 1
0
	 0

	sin(𝛽)
	 0

cos(𝛽)
	 0

	 0
	 0
	0
	1

𝑅# =

cos(𝛾)
sin(𝛾)
0
0

−sin(𝛾)
	cos(𝛾)
0
	 0

0
	 0
1
	 0

	 0
	 0
	0
	1

Yaw-Pitch-Roll Euler convention



DTU Compute

2025Image Analysis – 0250334 DTU Compute, Technical University of Denmark

Combining transformations – step by step

§ Step 3:Apply the transformation to a point 
𝑥′
𝑦′
𝑧′
1

= 𝐴 8

𝑥
𝑦
𝑧
1

𝐴 = 𝐴9 ∗ (𝑅;* 𝑅< ∗ 𝑅:) * 𝐴:* 𝐴= § Step 2:Multiply all 4D metrices 

§ Step 4:Convert back to 3D Cartesian 
coordinates by ignoring the W dimension

𝑥′
𝑦′
𝑧′

= 𝐴 8
𝑥
𝑦
𝑧

Remember: 
- Typical calculated in radians
- Same procedure for 2D and 3D images

𝑥′
𝑦′
𝑧′

=
𝑥
𝑦
𝑧
+

∆𝑥
∆𝑦
∆𝑧

§ Step 1:Covert 3D to 4D projective space, 
set W=1. Make translation into a matrix

𝑥′
𝑦′
𝑧′
𝑊

= 𝐴𝑇

∆𝑥
∆𝑦
∆𝑧
𝑊
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Different transformations
n Linear: Affine transformation
n Non-linear: Piece-wise affine or B-spline

– Remember: First to apply the linear transformations! 
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Image Registration pipeline
n Similarity measures
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Similarity measures
n Anatomical Landmarks

– time consuming to obtain positions manually
– Alternative: Joint intensity histogram

T1w	 T2w	 FLAIR	 T1	
Conven0onal	structural	MRI	 Quan0ta0ve	MRI	

Apparent	Exchange	Rate	
Advanced	diffusion	weighted	imaging		

Micro-FA	

PD	 1/T2*	
A	 B	

F	 G	

C	 D	 E	
Anatomical		
Connec0vity		
Mapping	

Brain	Connec0vity	

Tracktography	

Magne0za0on		
Transfer	

NODDI	

Intra-cellular	
volume		
frac0on	

Isotropic		
volume		
frac0on	

Fiber		
orienta0on	
dispersion	

Frac0onal	
Anisotropy	

Mean	 		
Diffusivity	

Conven0onal	DTI	
diffusion	weighted	imaging	metrics	

T1w	 T2w	 FLAIR	

T1	

Conven0onal	structural	MRI	
Quan0ta0ve	MRI	

Apparent	Exchange	Rate	

Advanced	diffusion	weighted	imaging		
Micro-FA	

PD	 1/T2*	

A	
B	

F	

G	

C	
D	

E	
Anatomical		Connec0vity		Mapping	

Brain	Connec0vity	
Tracktography	

Magne0za0on		Transfer	

NODDI	Intra-cellular	volume		
frac0on	

Isotropic		
volume		
frac0on	

Fiber		
orienta0on	dispersion	

Frac0onal	Anisotropy	
Mean	 		Diffusivity	

Conven0onal	DTI	

diffusion	weighted	imaging	metrics	

T1w	 T2w	 FLAIR	

T1	

Conven0onal	structural	MRI	
Quan0ta0ve	MRI	

Apparent	Exchange	Rate	

Advanced	diffusion	weighted	imaging		
Micro-FA	

PD	 1/T2*	

A	
B	

F	

G	

C	
D	

E	
Anatomical		Connec0vity		Mapping	

Brain	Connec0vity	
Tracktography	

Magne0za0on		Transfer	

NODDI	Intra-cellular	volume		
frac0on	

Isotropic		
volume		
frac0on	

Fiber		
orienta0on	dispersion	

Frac0onal	Anisotropy	
Mean	 		Diffusivity	

Conven0onal	DTI	

diffusion	weighted	imaging	metrics	

- Same subject

- Same intensity histogram 

- Same subject

- Different intensity histogram

- Same subject

- Different intensity histogram 

Reference

TemplatesT1w	 T2w	 FLAIR	
T1	

Conven0onal	structural	MRI	
Quan0ta0ve	MRI	

Apparent	Exchange	Rate	

Advanced	diffusion	weighted	imaging		Micro-FA	

PD	 1/T2*	

A	
B	

F	
G	

C	
D	

E	
Anatomical		Connec0vity		
Mapping	

Brain	Connec0vity	
Tracktography	

Magne0za0on		Transfer	

NODDI	
Intra-cellular	
volume		
frac0on	

Isotropic		
volume		
frac0on	

Fiber		
orienta0on	
dispersion	

Frac0onal	
Anisotropy	

Mean	 		Diffusivity	

Conven0onal	DTI	

diffusion	weighted	imaging	metrics	

A?

A?

A?

T1W T2W

FLAIR

T1W

MRI scans
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Similarity measure: Mean squared 
difference (MSD)
n Compare difference in intensities. 

– Same similarity measure we used for anatomical landmarks (positions) in a 
previous lecture

– Fast to estimate

n Many local minima’s (sub optimal solutions) 
– Intensities are not optimal for this similarity metric

T1w	 T2w	 FLAIR	 T1	
Conven0onal	structural	MRI	 Quan0ta0ve	MRI	

Apparent	Exchange	Rate	
Advanced	diffusion	weighted	imaging		

Micro-FA	

PD	 1/T2*	
A	 B	

F	 G	

C	 D	 E	
Anatomical		
Connec0vity		
Mapping	

Brain	Connec0vity	

Tracktography	

Magne0za0on		
Transfer	

NODDI	

Intra-cellular	
volume		
frac0on	

Isotropic		
volume		
frac0on	

Fiber		
orienta0on	
dispersion	

Frac0onal	
Anisotropy	

Mean	 		
Diffusivity	

Conven0onal	DTI	
diffusion	weighted	imaging	metrics	

T1w	
T2w	

FLAIR	

T1	

Conven0onal	structural	MRI	

Quan0ta0ve	MRI	

Apparent	Exchange	Rate	

Advanced	diffusion	weighted	imaging		

Micro-FA	

PD	
1/T2*	

A	

B	

F	

G	

C	

D	

E	Anatomical		Connec0vity		Mapping	

Brain	Connec0vity	Tracktography	

Magne0za0on		Transfer	

NODDI	Intra-cellular	volume		frac0on	
Isotropic		volume		frac0on	

Fiber		orienta0on	dispersion	

Frac0onal	Anisotropy	 Mean	 		Diffusivity	

Conven0onal	DTI	

diffusion	weighted	imaging	metrics	

Reference/Fixed Template/moving

A high intensity A low intensity Is T optimal? 

NO!

§ Big intensity 
difference

§ Large MSD error

Xi
T(Xi)

T
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Similarity measure: Normalised Cross-
correlation
n Normalised Cross-correlation of intensities in two images

– Fast to estimate

n Risk of local minima’s (sub optimal solutions) 
– Less robust if image modalities have different intensity histograms
– Normalise: Reduce the impact of outlier regions

IF

IM(T)

𝜃

§ Multiplication is a dot product

§ 𝐼C 0 𝐼D(𝑇) = 𝐼C 𝐼D(𝑇) cos 𝜃
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Joint intensity histograms 
S
am

e 
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e 

m
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D
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m
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§ Perfect registered: Optimal joint intensity agreement
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Joint intensity histograms 
S
am

e 
im

ag
e 

m
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D
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t 
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e 

m
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§ Small translation difference: Lower joint intensity agreement
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Similarity measure - Entropy
n Comes from information theory.

– The higher the entropy the more the information content.

n Entropy (Shannon-Weiner):

𝐻= -∑) 𝑝) 𝑙𝑜𝑔* 𝑝)
Where b: the base of the logarithm

- Bits: b=2 and bans: b=10
- Entropy is typically in bits i.e. typical used in digital information
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Quiz 3: Highest entropy?

A) Mix 1
B) Make a new choice
C) Contain no liquorice
D) Mix 2
E) It is not healthy

I went to the candy shop and wanted 
to select the cady mixture that has 
the highest entropy. Each candy 
mixture include in total 27 pieces. 
Which one should I select?

Candy mix 1

Candy mix 2
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Quiz 4:What is the entropy of the candy mix 1?

A) 0.38
B) 0.99
C) 0.45
D) 0.23
E) 0.00

Candy mix 1

SOLUTION:
Green=13
Pink=14
Total=27

pG=13/27
pP=14/27
Entropy= -pG*log2(pG)-pP*log2(pP)=0.99
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Histograms of images
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Joint entropy - Mutual information
n Joint entropy

n Similarity measure: The more similar the distributions, the 
lower the joint entropy compared to the sum of the individual 
entropies i.e., total area is less spread out

𝐻(𝑋, 𝑌)=- ∑+,- 𝑝+,- 𝑙𝑜𝑔 𝑝+,-

𝐻(X,Y)≤ 𝐻 𝑋 +𝐻(𝑌)

en.wikipedia.org/wiki/Mutual_informationn Example of rotation (Pluim et al., 2003, TMI)

0 degrees 2 degrees 5 degrees 10 degrees
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Contrast in joint histograms 
n The histogram of the two images must reflect contrast to 

similar structures for image registration to be successful



DTU Compute

2025Image Analysis – 0250348 DTU Compute, Technical University of Denmark

Image Registration pipeline
n The optimiser

– How to find the transformation parameters?
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The optimizer
n We have an objective function describing: 

– A cost function (C) based on a similarity metric
§ Quantifying how well a geometrical transformation (T(𝑤)) maps an 

image (moving, IM) into another (fixed, IF)

n Hence, a good match is a minimum difference:

!𝑇! = arg𝑚𝑖𝑛
":

∁ 𝑇!; 𝐼# , 𝐼$
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The parameters
n The parameters is a vector 

with p elements 
n The type of transformation and 

the dimension of the dataset set 
the number of parameters
– Translation p = 2 or 3 (3D)
– Rotation p = 1 or 3 (3D)
– Scaling p = 1

𝑤	 ∈ ℛ%
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Optimization by minimization 
n Find the parameter set that minimizes the objective function
n How to find the solution?

– Analytical: Works fine for translation (previous lecture)
– Numerical: Iterative approaches to search for affine transformations

𝜕𝐶
𝜕𝑤

= 0

We simply differentiate w.r.t. w:

!𝑤 = argmin
;
𝐶To find: 
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The challenge
n w span a p-dimensional space  w=[w1,w2, ...,wp]T

n Complex parameter space with many data points
– Finding the lowest place in mountains

C(w)

w

!𝑤!"#$%&'
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Iterative optimisation
n Aim: Find in parameter space w:              i.e. a global minima 

– Search all possible combinations of w? (not a good idea)
– Systematically search the parameter space = Good idea 

n Iterative optimisation strategies
– Step-wise searching the parameter space

n Many methods exist
– Gradient based
– Genetic evolution
– ...

𝜕𝐶
𝜕𝑤

= 0

Contour plot of 2D parameter space (w1,w2)



DTU Compute

2025Image Analysis – 0250354 DTU Compute, Technical University of Denmark

Gradient descent
n Definition: C(w) is differentiable in neighbourhood of a point wn
n C(w) decreases in the negative gradient direction of wn.
n 𝑤'() = 𝑤' − 𝛾∇𝐶(𝑤')

– ∇𝐶(𝑤'): Gradient direction at point wn

– 𝛾: Step length --> If small enough: C(𝒘') ≥ C(𝒘'())

∇𝐶 𝑤"#$ =
𝜕𝐶
𝜕𝑤

≈ 0

5) Solution: Global minima

𝛾 0) Define a step length

∇𝐶(𝑤$) 4) Repeat 2)+3) 

∇𝐶(𝑤%)1) Start guess of a position

2) Find gradient
3) Take a step

Procedure:
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[1,1]T

Iteration:1

From a Matlab function: grad_descent.m
By James T. Allison

X2

X1
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[1,1]T

Iteration:2
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[1,1]T

Iteration:3
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[1,1]T

Iteration:37 (final)
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[0,-1]T

n Can find solution from any place
n No local minima’s nearby

Iteration:31 (final)
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	+∇𝐶 𝑥( = + 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.1; 
n Max steps: 1000
n Start position: x0=[0.5,0.5]T

n If use positive gradient 
– WRONG DIRECTION!
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.0001; 
n Max steps: 1000
n Start position: x0=[1,1]T

n Too small step size –many steps
n Do not find a solution

Iteration:1000 (final)



DTU Compute

2025Image Analysis – 0250362 DTU Compute, Technical University of Denmark

Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.2 (optimal)
n Max steps: 1000
n Start position: x0=[1,1]T

n Few steps: Optimal step size

Iteration:17 (final)
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

	

n Step length: 𝛾=0.3
n Max steps: 1000
n Start position: x0=[1,1]T

n Too large step size – unstable
n Sensitive to local minima’s
n Solution: Dynamic step length

Iteration:65 (final)
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Gradient descent
n Cost function:C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

n Gradient at point xn: 	 −∇𝐶 𝑥( = − 2𝑥& + 𝑥'
𝑥& + 6𝑥'

n Step length: 𝛾=0.1 
n Max steps: 1000
n Start position: x0=[1,1]T

n Noisy data: Cannot find optimum

Iteration:1000 (final)
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Quiz 5:What is the updated position xnew?
Model fitting uses a cost function: C x = 𝑥&' + 𝑥&𝑥' + 3𝑥''

and an iterative optimizer Gradient descent with a step length of 0.2

What is the new position of xnew =[?,?]T after one step from position x=[1, 0]T?

Solution:
1) Calculate the gradient for x=[1,0]T

• differentiate C:	∇𝐶 𝑥 = 2𝑥$ + 𝑥&
𝑥$ + 6𝑥&

∇𝐶([1,0]T)= [2,1]T

2) Update the step: xnew=x- ∇𝐶*stepLength
• xnew=[1,0]T-0.2*[2,1]T=[0.6, -0.2]T

A) [0.3,2.3]T

B) [-1.7,0.3]T

C) [1.4,0.2]T
D) [0.6,-0.2]T

E) [5.2,2.2]T
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Image Registration pipeline
n The sampler

– How many data points for a robust similarity measure? 
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The sampler
n Calculating the similarity metrics: 

– Summing over all pixels/voxels in an image is VERY time 
consuming

n Selecting a sparse sampling strategy
– Reducing CPU load and reduce memory load when 
– Efficient selection of image points
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The sampler A
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with translation

n Sparser sampling: Similar scatter plot
– Define a good compromise (sample the whole image)

n Ordered vs Random
– Spatial dependency: Dependent on large homogeneous structures
– Very sparse sampling: Risk not sampling small structures
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Image Registration pipeline
n Interpolation

– To map the intensities from the template image to the grid 
of the reference image via a transformation matrix 
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A FLASH BACK to a previous Lecture: 

Forward vs Backward mapping
n In a nutshell

– Going backward we need to invers the transformation

Template
(moving)

Reference 
(fixed)

A-1

A
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Interpolation methods
n Enhances structural boundaries

– Higher-order interpolation methods: Reduce blurring

n May visually appear “sharper”
– Do not change the image information!
– Only if combining interpolated images w. different information of the 

same object – e.g. different angles of moving object e.g. car
à Super resolution (another topic)
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Image Registration pipeline
n Pyramid
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The Pyramid Principle
n To ensure robust image registration

From space?From a birdWalking distancePretty closeSome stones?

Very detailed Good overview
Too coarse
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The Pyramid Principle
n To ensure robust image registration

From space?From a birdWalking distancePretty closeSome stones?

Very detailed Good overview
Too coarse
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The Pyramid Principle
n A Multi-resolution strategy
n To ensure robust image registration

– To reduce local minima's
– What is a prober image resolution level ?

C
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Original resolution
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The Pyramid Principle
D
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n Lower image resolution
– Down sampling (memory reduction, fewer data)

n Less structural details
– Smoothing (Complex method settings become more general)
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Image Registration pipeline
n At the end we just select an existing tool
n Still, we need how too select method settings J

– This was the first step in the registration pipeline
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Combining Image Registration pipelines
n First step : Within subjects (Same structure + temporal)
n Second step: Between subjects (different structure+ temporal)

– Can use an iterative procedure to improve registration

n Combine subject-wise transformation metrics by multiplication
§ Apply only one interpolation at the end to minimise blurring 

Reference

Within subjects

B
et

w
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n 
su

bj
ec

ts

B1

B2

B3



DTU Compute

2025Image Analysis – 0250379 DTU Compute, Technical University of Denmark

Quiz 6: Quality inspection - How

A) Use a similarity measure
B) Visual inspection
C) No need it to - just works
D) Sum of square difference
E) Search the internet for experience

How to quality assurance (QA) the image registration results?
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Image Registration pipeline strategy
n Within subjects and between challenges

– E.g. Histology 2D à 3D: Structural difference between slices
– Visually inspect your results!!
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Image Registration pipeline strategy
n Within subjects across time points (temporal)

– Remove image distortions + subjection motion

n Visually inspect your results!!

From FSL tool box - EDDY example

Before registration After registration
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What can you do after today?
n Describe difference between a pixel and voxel
n Choose a general image-to-image registration pipeline 
n Apply 3D geometrical affine transformations
n Define coordinate system of an object for 3D rotation 
n Use the Homogeneous coordinate system to combine transformations
n Compute a suitable intensity-based similarity metric given the image 

modalities to register
n Compute the normalized correlation coefficient (NNC) between two 

images
n Compute Entropy
n Describe the concept of iterative optimizers
n Compute steps in the gradient descent optimization algorithm
n Apply the pyramidal principle for multi-resolution strategies
n Select a relevant registration strategy: 2D to 3D, Within- and between 

objects and moving images
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Next week – Real-time face detection using 
Viola Jones method


