

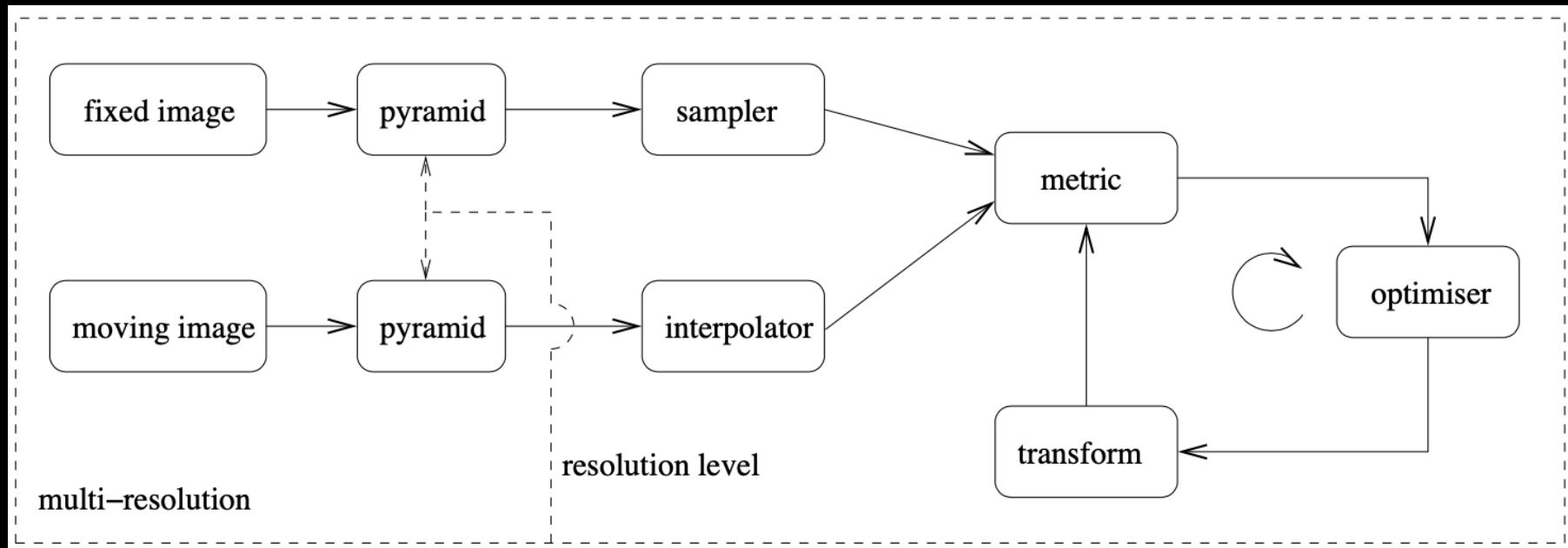
Image Analysis

Tim B. Dyrby
Rasmus R. Paulsen
DTU Compute

tbdy@dtu.dk

<http://www.compute.dtu.dk/courses/02503>

Lecture 10 – Advanced image registration



Klein et al 2010. (IEEE Trans Med Img)

<https://elastix.lumc.nl>

What can you do after today?

- Describe difference between a pixel and voxel
- Choose a general image-to-image registration pipeline
- Apply 3D geometrical affine transformations
- Define coordinate system of an object for 3D rotation
- Use the Homogeneous coordinate system to combine transformations
- Compute a suitable intensity-based similarity metric given the image modalities to register
- Compute the normalized correlation coefficient (NNC) between two images
- Compute Entropy
- Describe the concept of iterative optimizers
- Compute steps in the gradient descent optimization algorithm
- Apply the pyramidal principle for multi-resolution strategies
- Select a relevant registration strategy: 2D to 3D, Within- and between objects and moving images

Go to www.menti.com and use the code **4414 1532**

Associations to a mountain view

Mount Everest - Himalayas

Image Registration pipeline

■ The input images

- Fixed image: Reference image
- Moving image: Template image

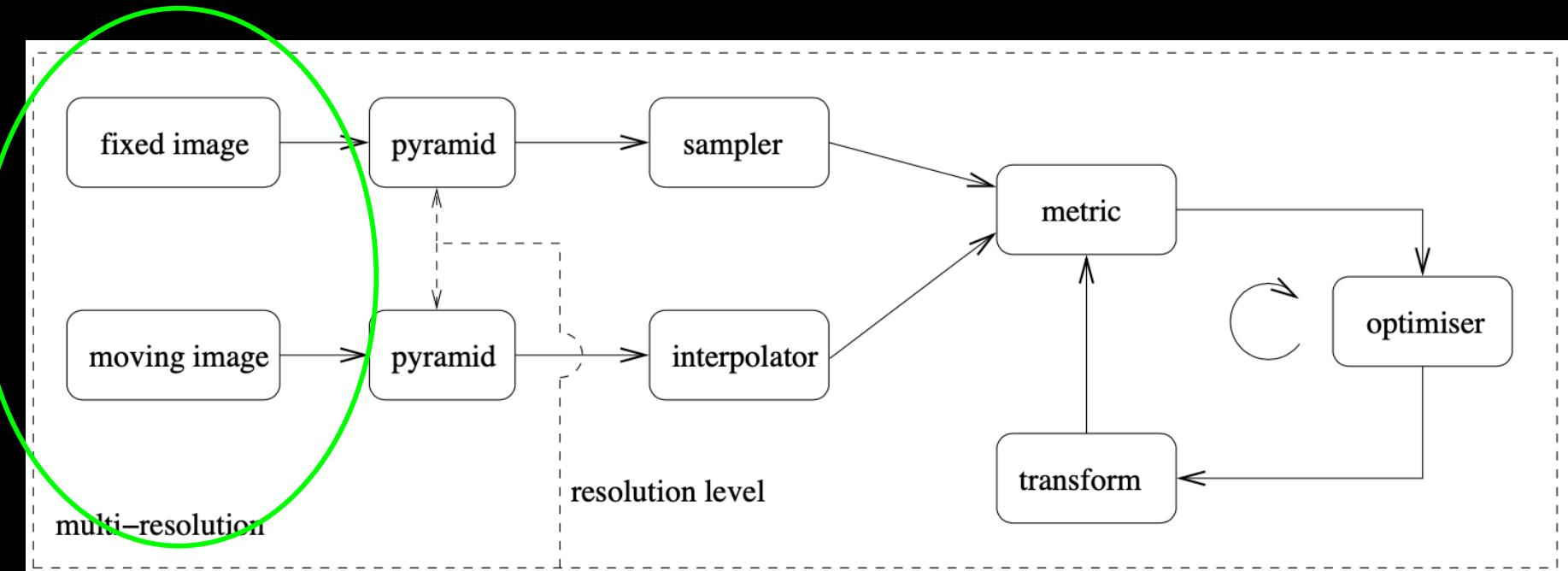
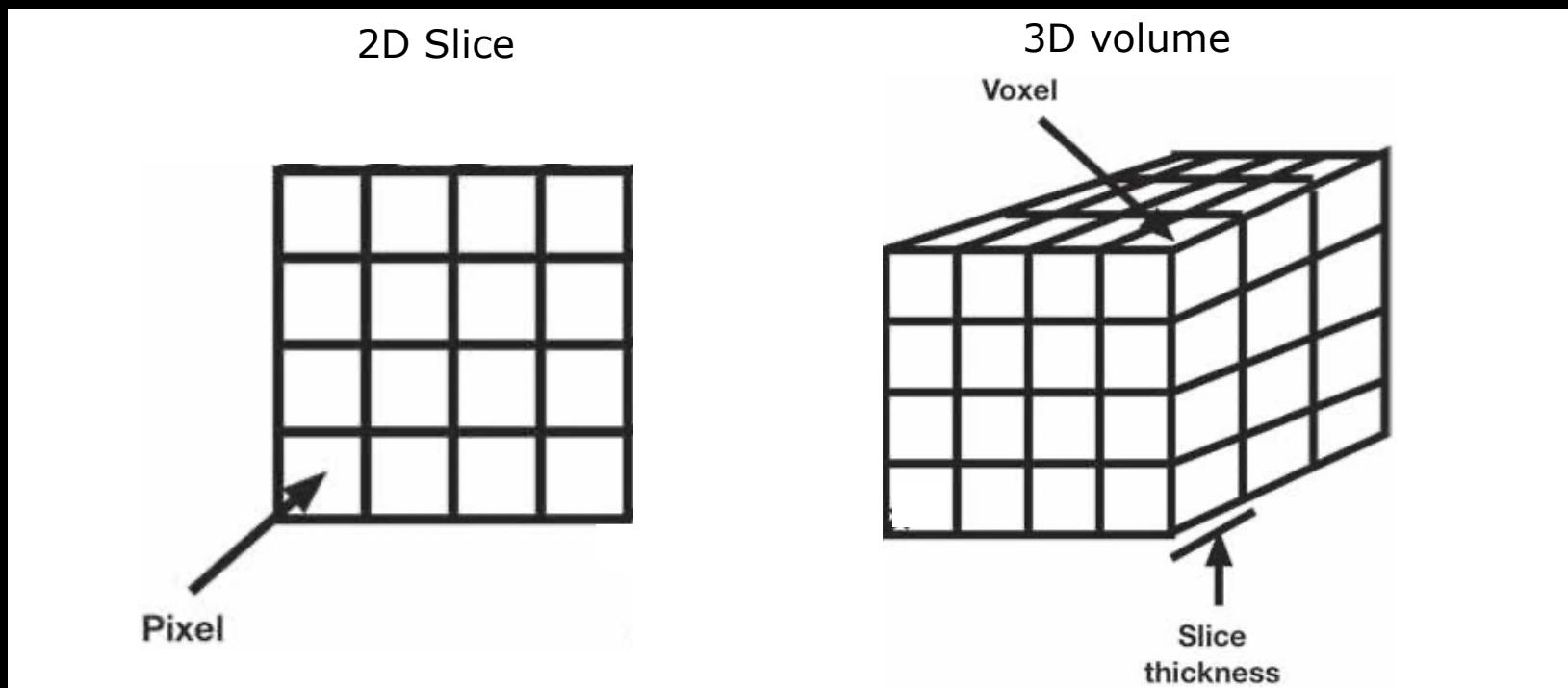


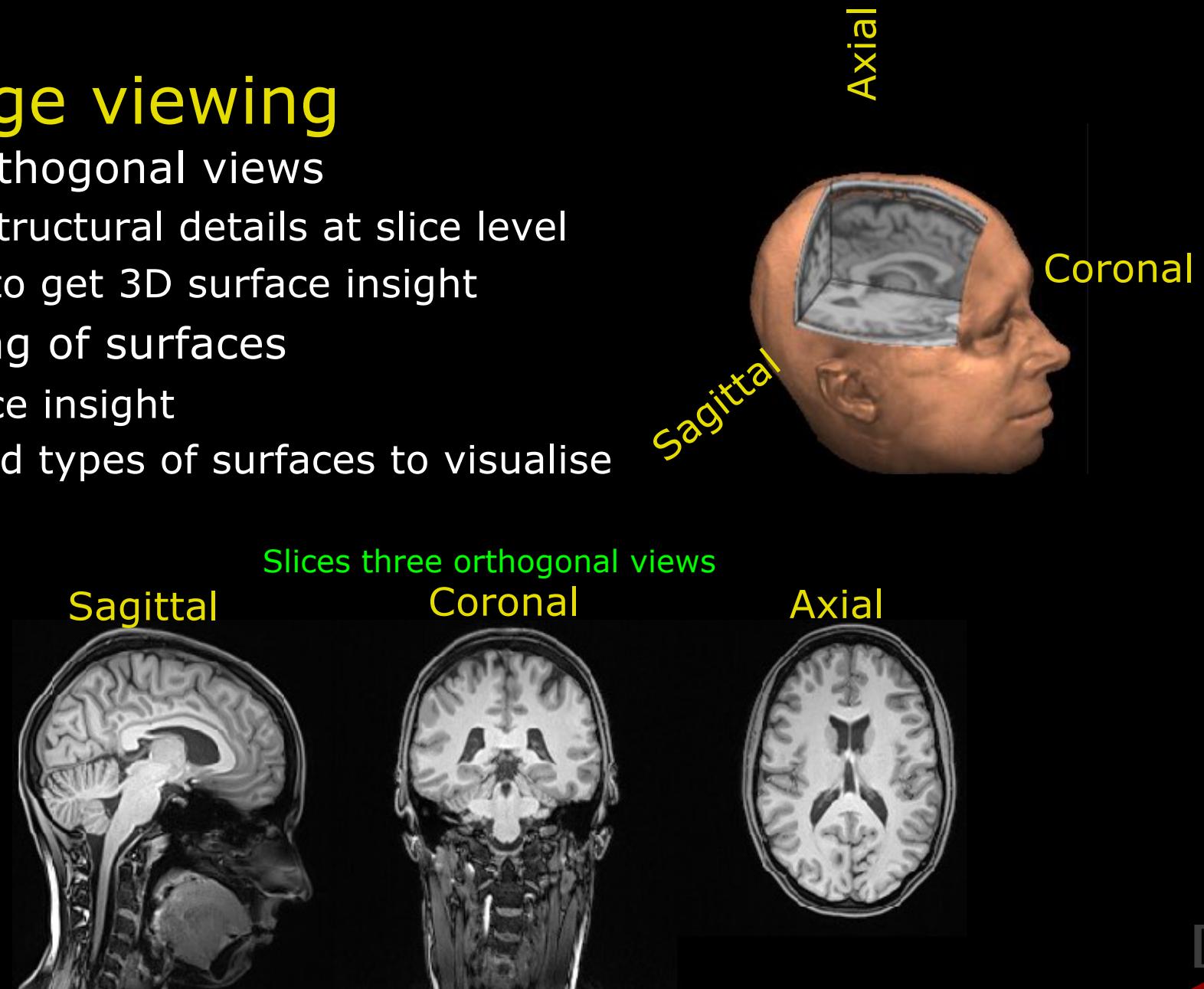
Image volumes

- Image slice: 2D ($N \times M$) matrix of pixels
- Image volumes: 3D ($N \times M \times P$) matrix of voxels
 - An element is a **volume pixel** i.e. voxel
- Pixel vs voxel intensity
 - Integrated information within an area or volume



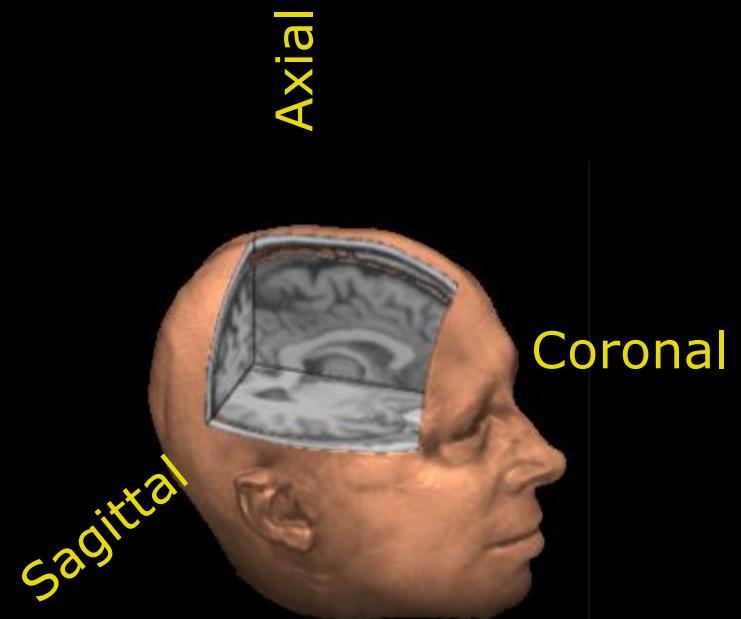
3D image viewing

- Three orthogonal views
 - Fine structural details at slice level
 - Hard to get 3D surface insight
- Rendering of surfaces
 - Surface insight
 - Limited types of surfaces to visualise



3D image viewing

- Three orthogonal views
 - Fine structural details at slice level
 - Hard to get 3D surface insight
- Rendering of surfaces
 - Surface insight
 - Limited types of surfaces to visualise



Slices three orthogonal views

Sagittal

Coronal

Axial

www.dreamstime.com/illustration/truck-top-view.html

Image volumes

- Stacked slices: 2D to 3D
 - Object cut into slices, imaged and stacked
 - Still pixels – not voxel
- Registration challenges
 - Geometrical distortions between slices

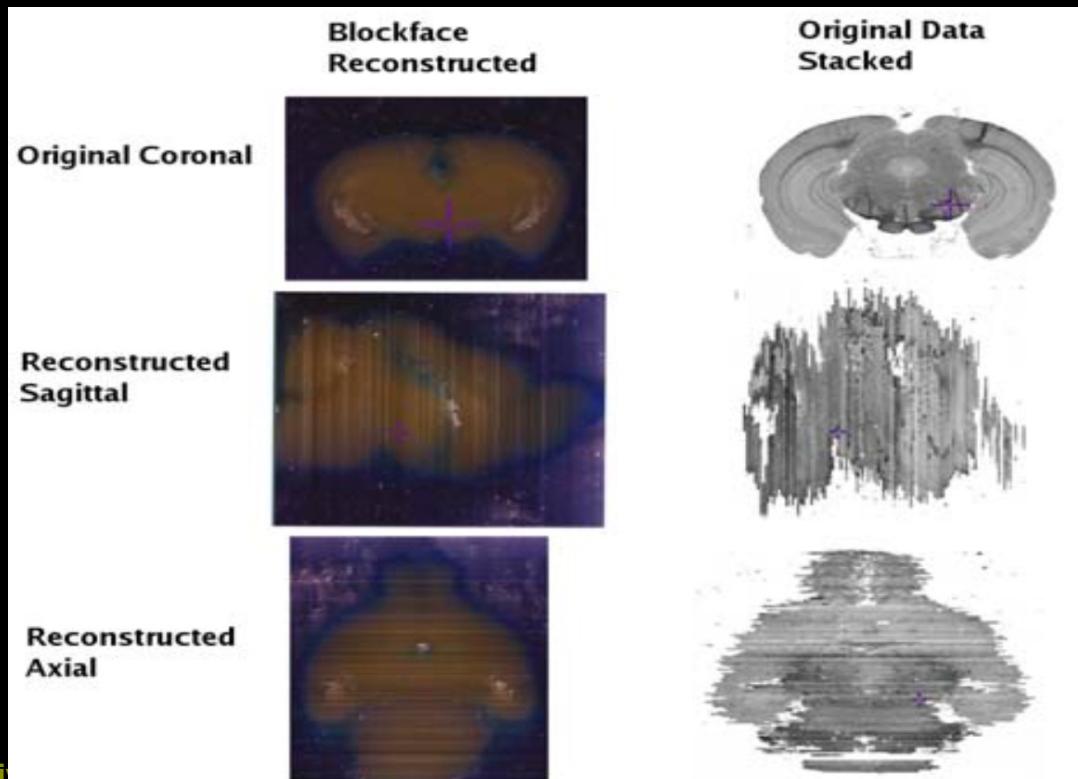
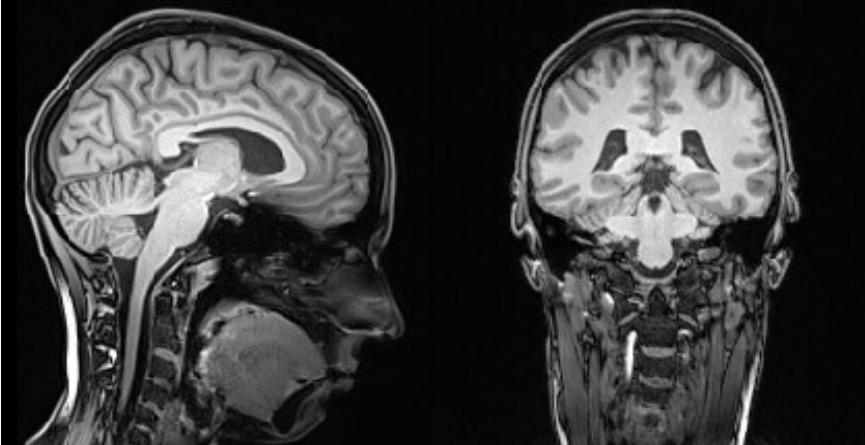
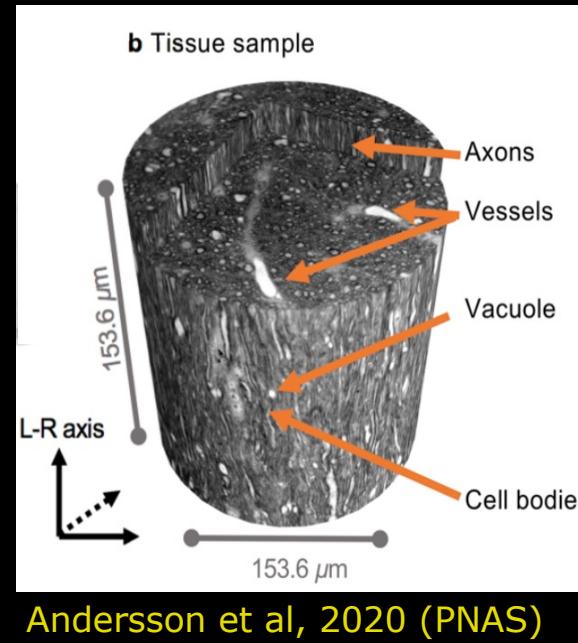


Image volumes

- Intact sample
 - No sample cutting
- Registration challenges:
 - Stacking 3D volumes

MRI
Whole brain
1 mm isotropic resolution voxels



Synchrotron x-ray imaging
Tissue sample 1mm
75 nm isotropic resolution voxels

Stacked 3D volumes

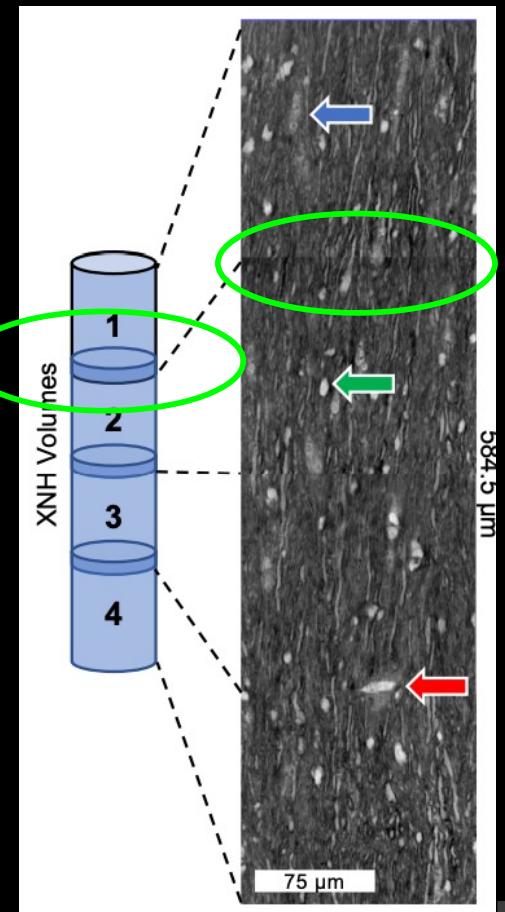
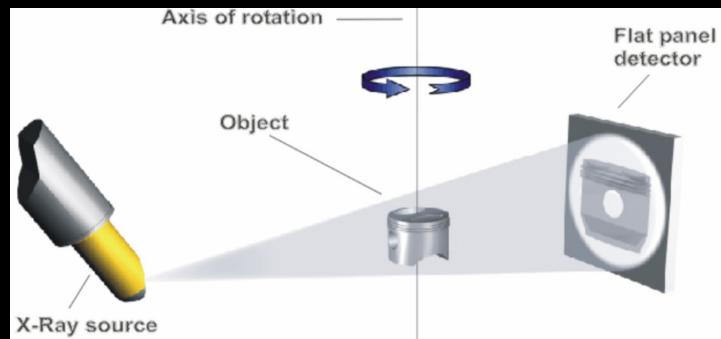


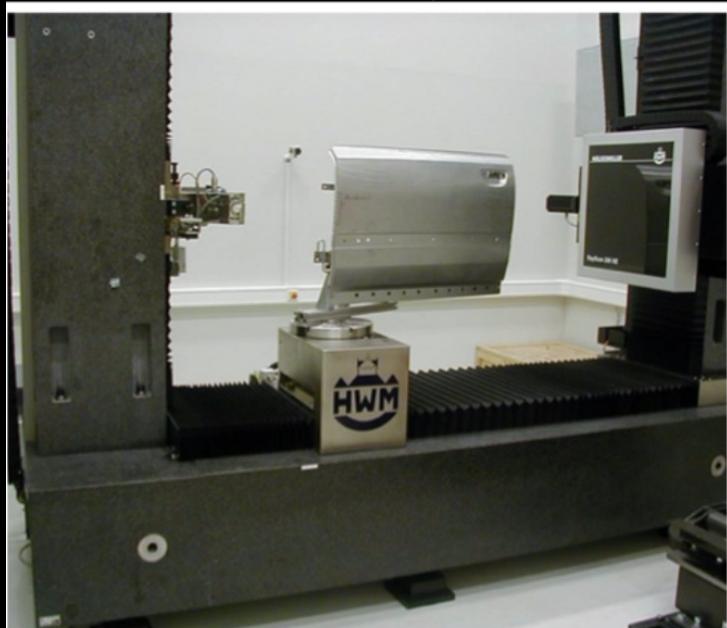
Image volumes

- Intact sample
 - No sample cutting
- Registration challenges:
 - Multi image resolution: Fit Region-of-interest image to whole object image

Rotating sample in x-ray tomography



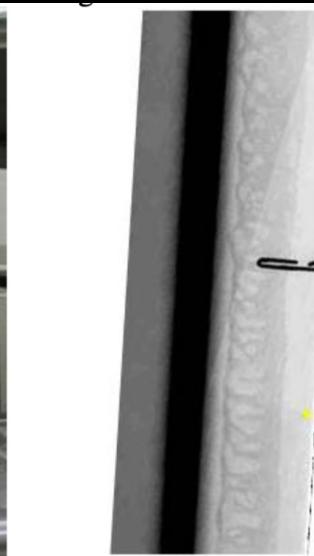
CT scanning



Car door AUDI A8, size: 1150 mm

Region of interest (ROI)

CT of ROI (non-destructive)



Microscope (destructive)

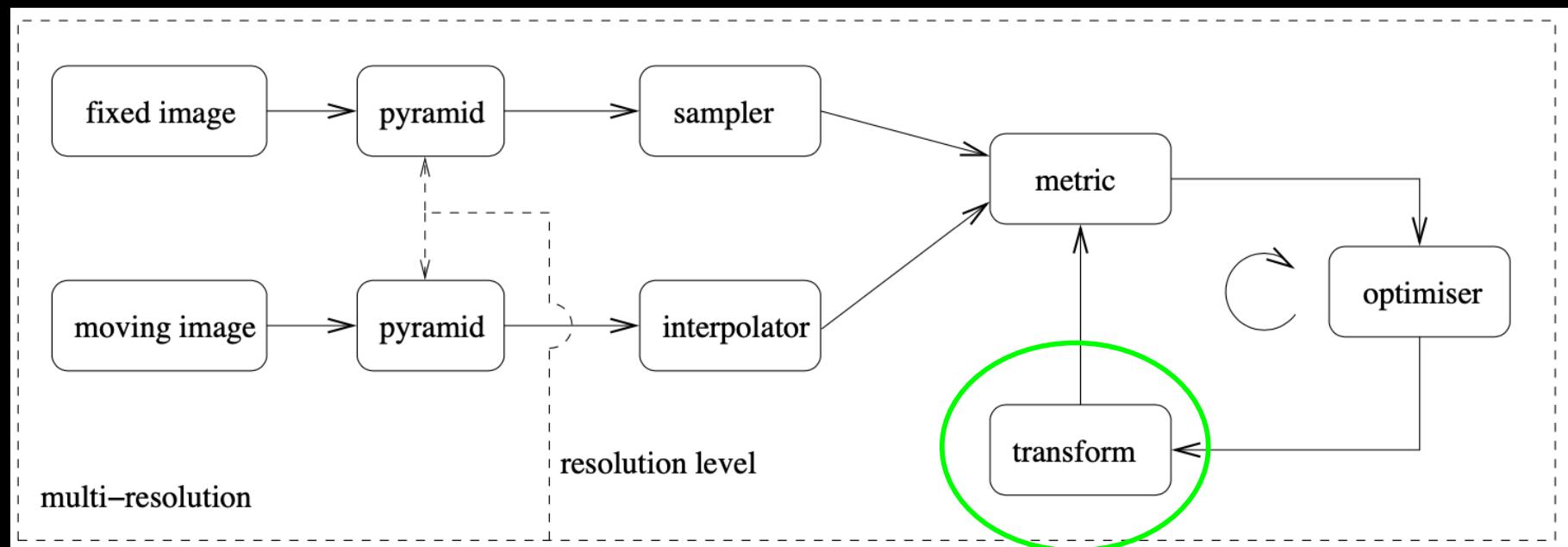
The inspection of a glued joint of a car body

Simon et al, 2006 (ECNDT)

Image Analysis – 02503

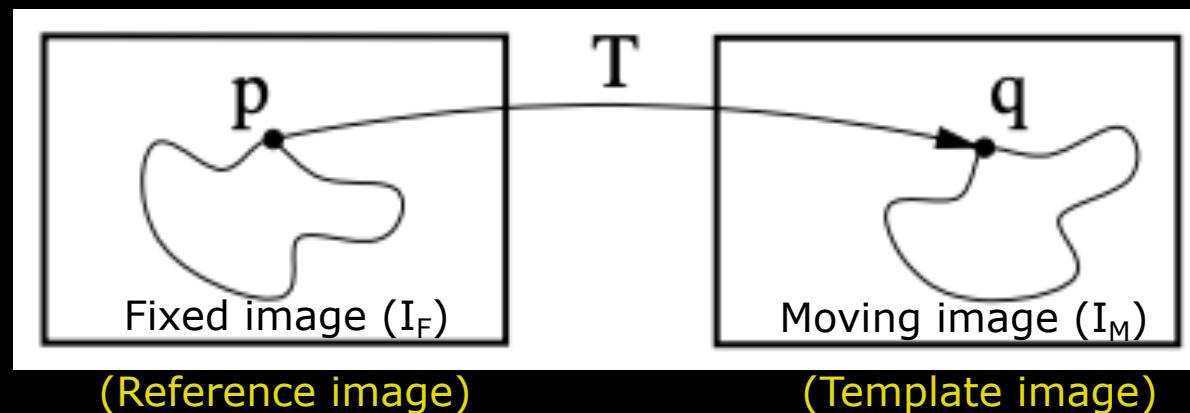
Image Registration pipeline

■ Geometrical transformations



Geometric transformations

- Translation
- Rotation
- Scaling
- Shearing



$$\hat{T} = \arg \min_T C(T; I_F, I_M)$$

Translation 2D vs 3D

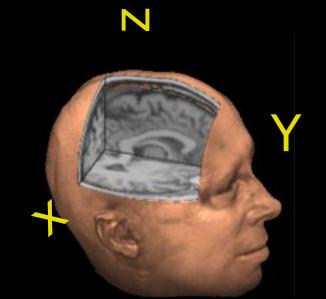
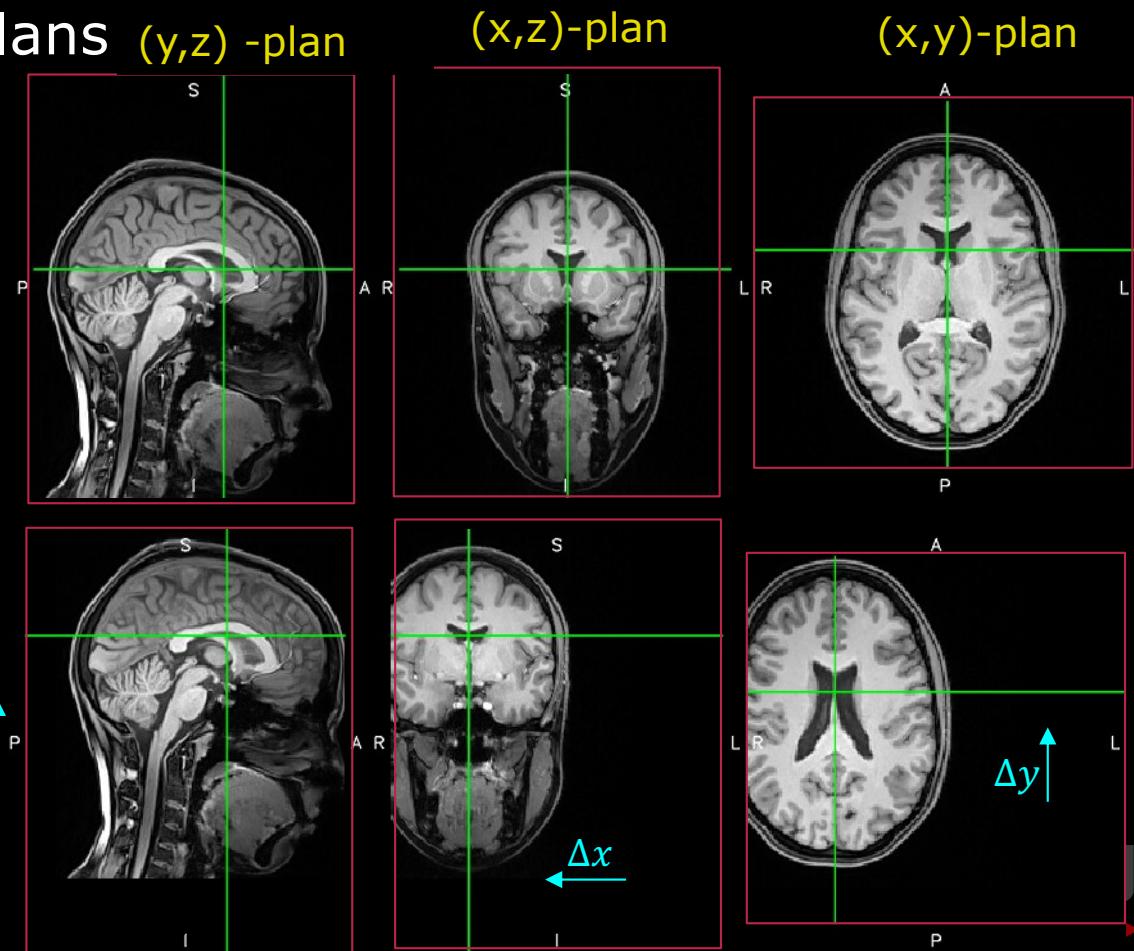
- The image is shifted
 - 2D: Inspect one slice plan
 - 3D: Inspect three slice plans

2D: (x,y)-plan

$$\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} 60 \\ 20 \end{bmatrix}$$

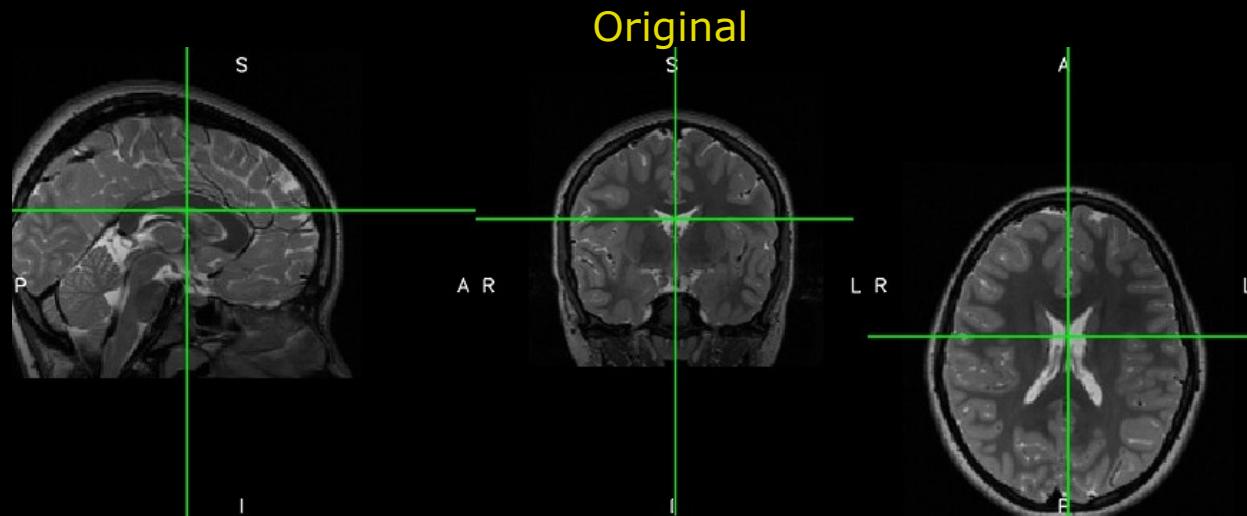
3D: (x,y,z)-plans

$$\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} 60 \\ 20 \\ 15 \end{bmatrix}$$

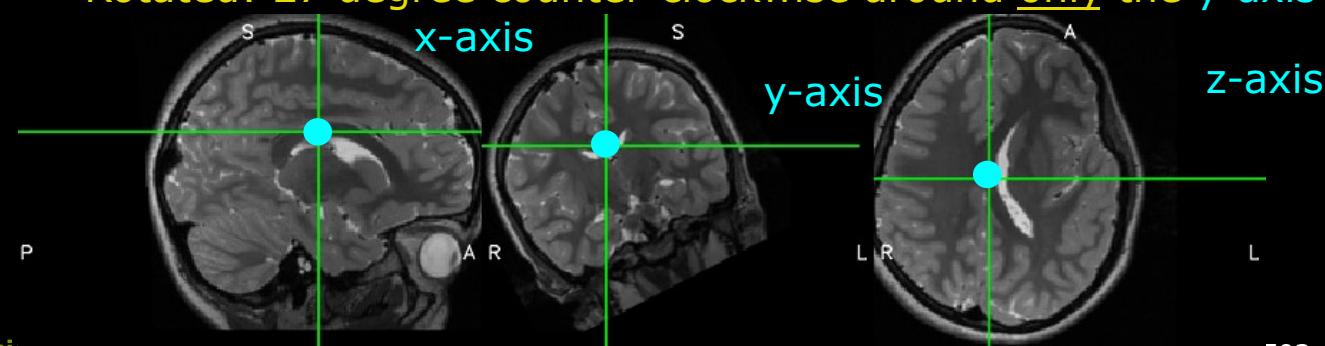


Rotation 3D

- The image is rotated around an origin (e.g. the centre-of-mass)
- Rotate the object around three axis hence three angles.
 - Inspect all three views to identify a rotation



Rotated: 27 degree counter-clockwise around only the y-axis

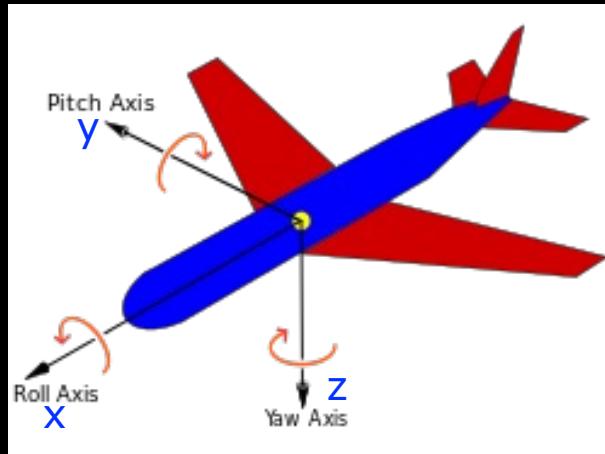
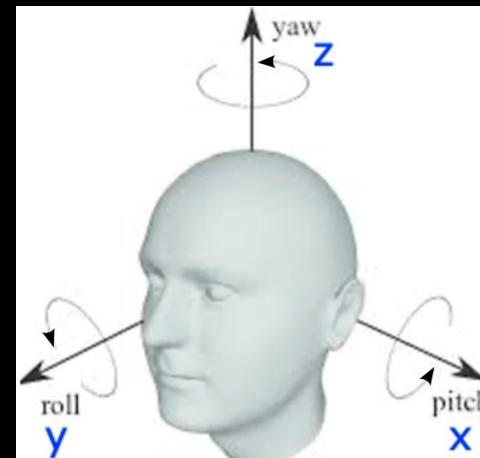
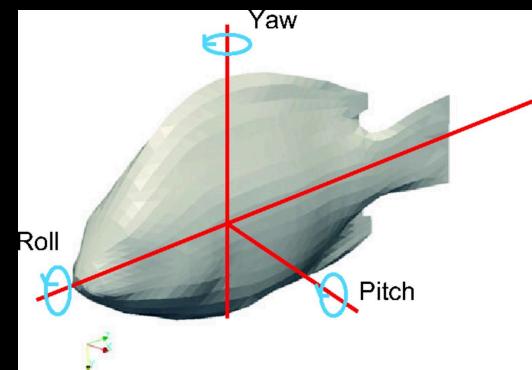


3D Rotation coordinate system

- Three element rotations round the axes of the coordinate system
- Pitch, Yaw and Roll
 - Note: Definition of the coordinate system is object specific

Rotation rules

- Counter clock-wise rotations: Right-hand rule (as in figures) ← We use here
- Clock-wise rotations: Left-hand rule

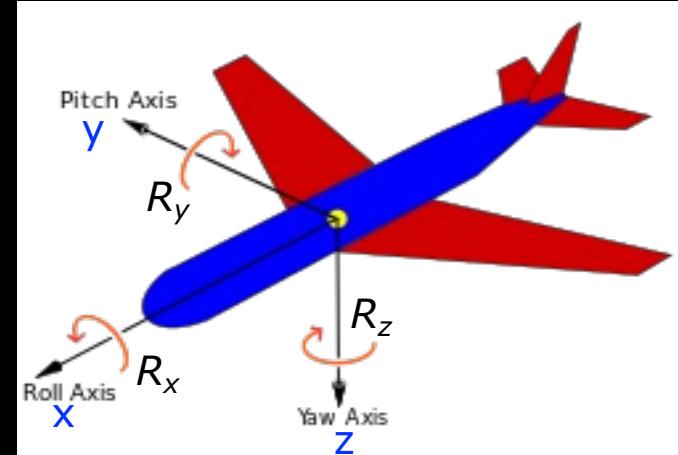


The principal axes of an aircraft
according to the air norm DIN 9300

3D Rotation coordinate system

- Axis-Angle representation
- Three composed element rotations
 - Angles: α, β, γ
 - Counter clock-wise rotations (Right-hand rule)
- The order matters
 - Several Euler-angle conventions exist
- Remember: Know your origin!

Axis-Angle representation

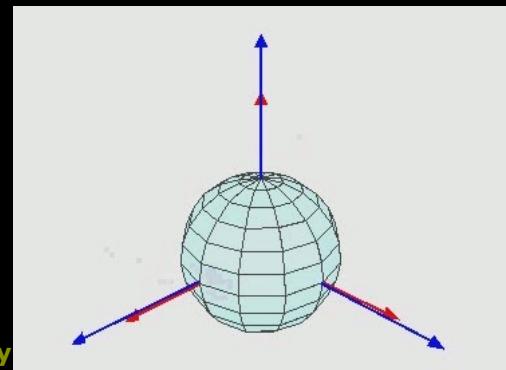
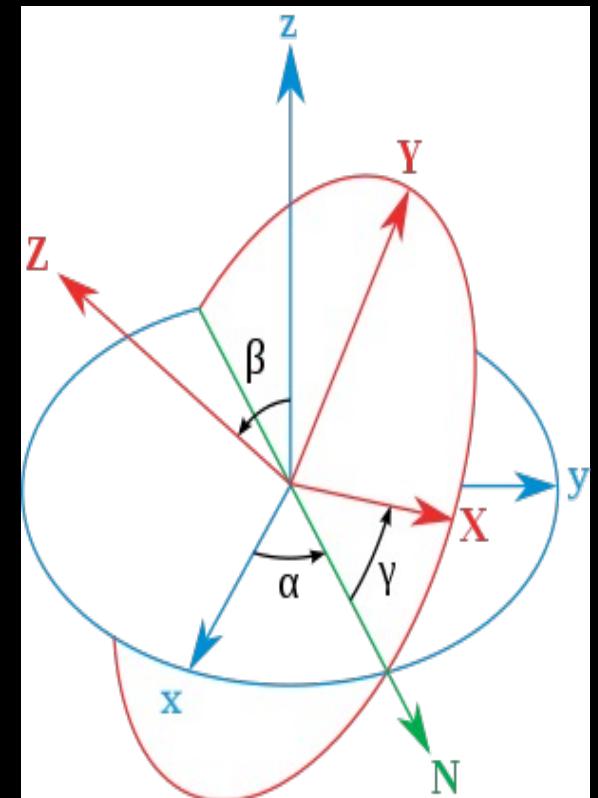


$$R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \quad R_Y = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \quad R_Z = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Euler convention - example

- The intrinsic ZXZ-Euler angle convention (uses the right-hand rule):
 - α : Around the **z-axis**. Defines the **line of nodes (N)**
 - β : Around the new **X-axis** defined by **N**
 - γ : Around the new **Z-axis** from **N**
- The order of coordinate system rotations:
 - Rotation order around the:
 - **z-axis**: Initial: Original frame (x,y,z) : α
 - **New X-axis**: *First coordinate system rotation (X,Y,Z)* : β
 - **New Z-axis**: *Second coordinate system rotation (X,Y,Z)* : γ

$$A_R = R_Z(\gamma) * R_x(\beta) * R_Z(\alpha)$$

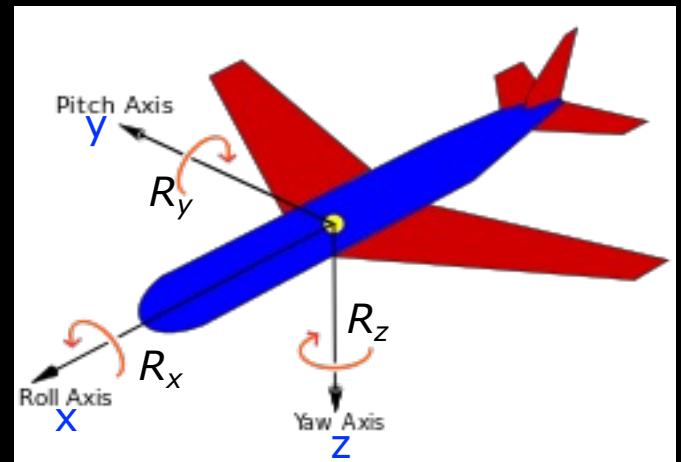


[wikipedia.org/wiki/Euler_angles](https://en.wikipedia.org/wiki/Euler_angles)

Euler convention – example for a flight

- The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
- Use defined coordinate system for the object
- Rotation order of a flight:
 - *Yaw: rotation around the Z-axis*
 - *Pitch: Rotation around the Y-axis*
 - *Roll: Rotation around the X-axis*

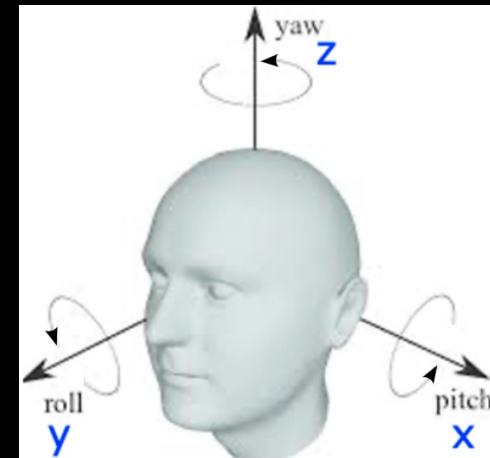
$$A_R = R_z(\gamma) * R_y(\beta) * R_x(\alpha)$$



Euler convention – example for a head

- The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
- Use defined coordinate system for the object
- Rotation order of a human head:
 - *Yaw: rotation around the Z-axis*
 - *Pitch: Rotation around the X-axis*
 - *Roll: Rotation around the Y-axis*

$$A_R = R_z(\gamma) * R_x(\beta) * R_y(\alpha)$$



Quiz 1: Affine 3D transformation

How many parameters?

- A) 6
- B) 5
- C) 16
- D) 12
- E) 3

SOLUTION:

Translation: $P=3$

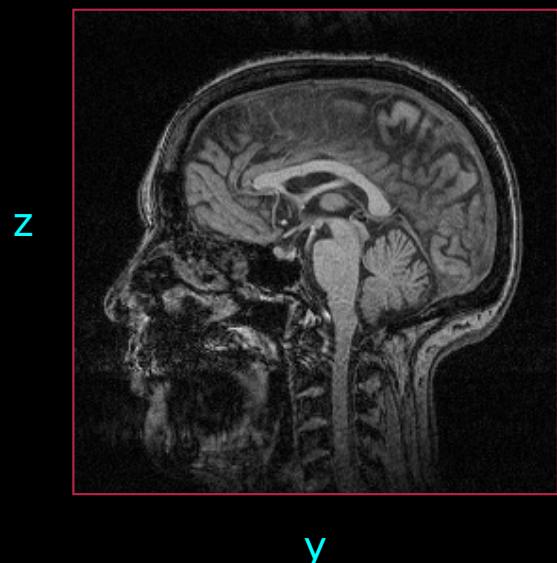
Rotation: $p=3$

Scaling: $p=3$

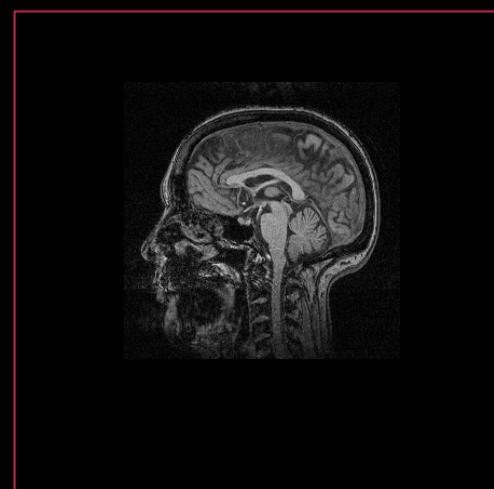
Shearing: $p=3$

Scaling in 3D

- The size of the image is changed
- Three parameters:
 - X-scale factor, S_x
 - Y-scale factor, S_y
 - Z-scale factor, S_z
- Isotropic scaling:



$$A = \begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & Sz \end{bmatrix}$$



$$A = \begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$

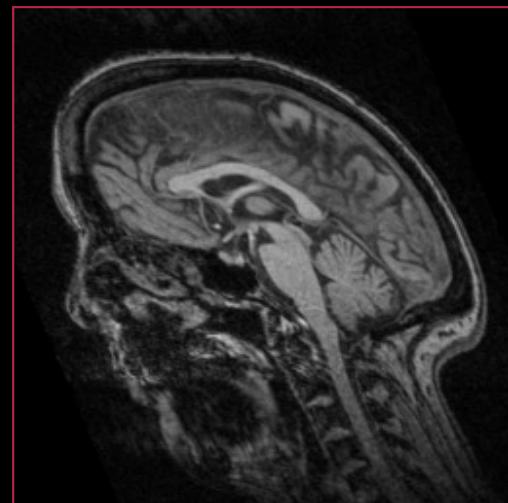
Shearing in 3D

- Pixel shifted horizontally or/and vertically
- Three parameters

$$A = \begin{bmatrix} 1 & S_{yx} & S_{zx} \\ S_{xy} & 1 & S_{yz} \\ S_{xz} & S_{yz} & 1 \end{bmatrix}$$



Shearing (z,y)-plan



Combining transformations

Translation:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} + \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Translation is a *summation* i.e. $P' = A + P$
- Rotation, Scale, Shear are *multiplications* i.e. $P' = A * P$

Rotations,
Scaling,
Shear:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Wish: To combine transformations via multiplications:

$$A = A_T * AR * A_{shear} * A_S$$

- Not possible with A_T

Homogeneous coordinates

Cartesian coordinates:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = A \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Projective geometry
 - Used in computer vision
- Adds an extra dimension to vector, W :

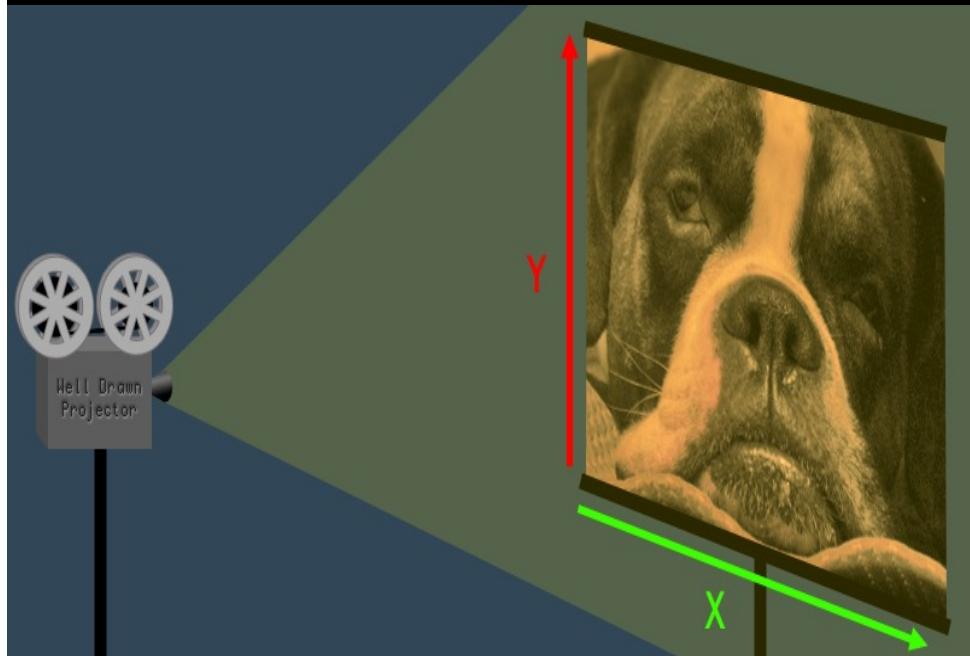
$$[x, y, z, w]$$

Homogeneous coordinates:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = A \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

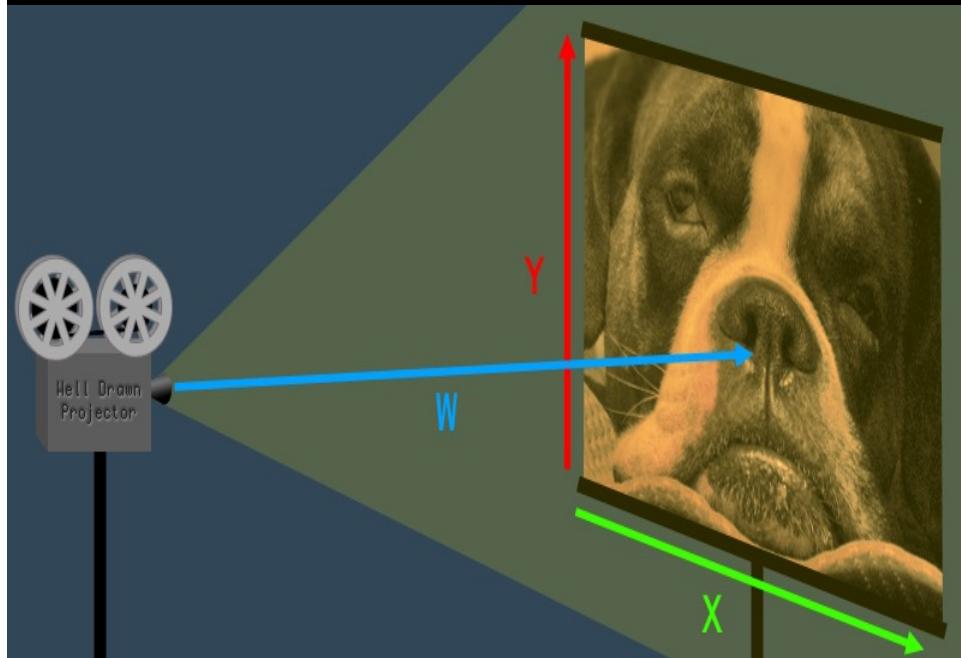
- W scales the x , y and z dimensions
- x, y, z are “correct” when $W=1$
- How does it work?

Homogeneous coordinates



- Euclidean geometry:
 - A point is (x, y)
 - A 2D image
 - Cartesian coordinates

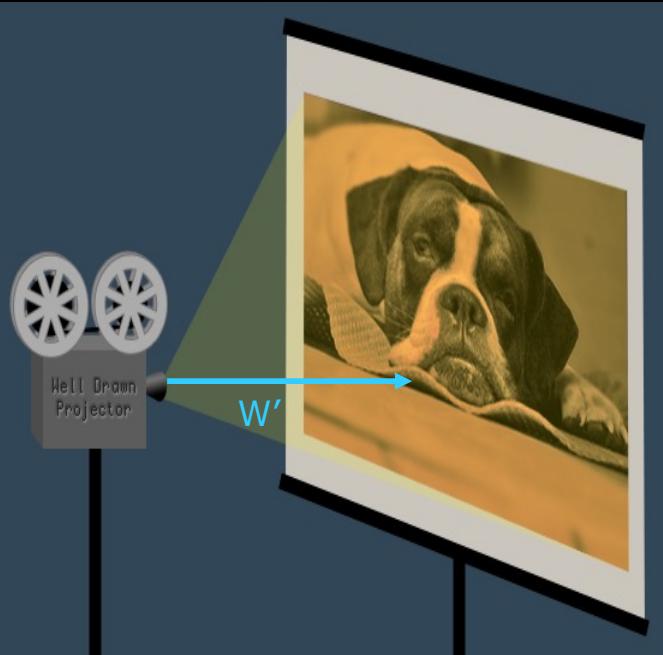
Homogeneous coordinates



- Euclidean geometry:
 - A point is (x, y)
 - A 2D image
 - Cartesian coordinates

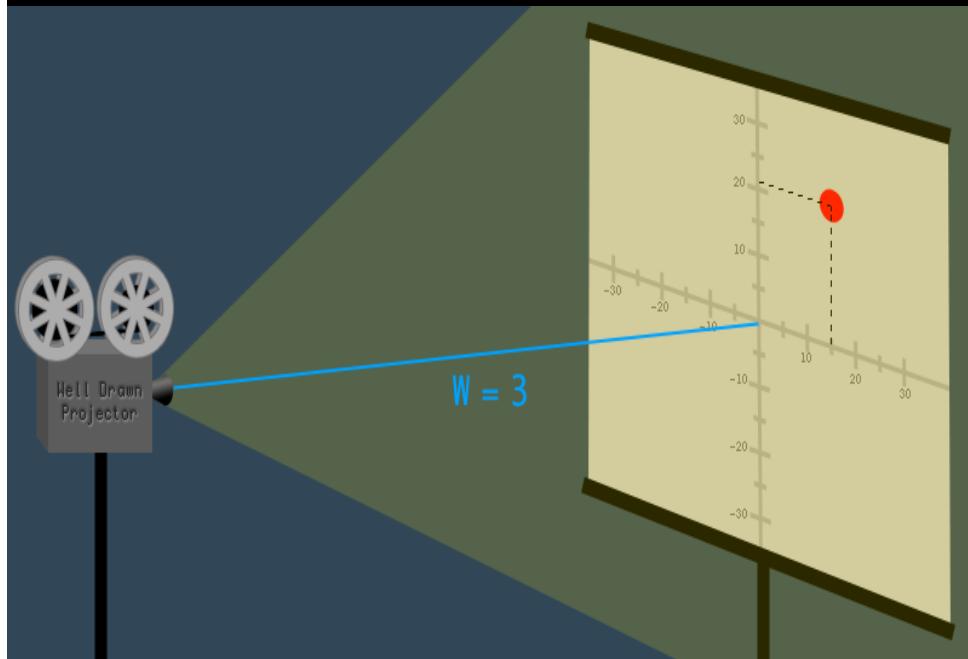
- Projective geometry:
 - A point is (x, y, W)
 - “Projective space” adds an extra **projective** dimension, W
 - Changing W scale factor:
 - No change to the point in projective space
 - Changing perspective/depth

Homogeneous coordinates



- A point in projective space is (x, y, W)
 - Its corresponding Euclidean point is $(x/W, y/W)$
- Increasing W (*the same x and y*)
 - The projected point appear closer to the origin
 - The object appear smaller (further away)
- Scaling to a new depth W'
 - Adjusting the point using a scale factor is W'/W i.e., new distance/old distance:
 $(x*(W'/W), y*(W'/W), W')$
- When W or $W' = 1$
 - a projective coordinate $(x, y, 1)$ corresponds directly to Euclidean point (x, y)

Homogeneous coordinates



Example:

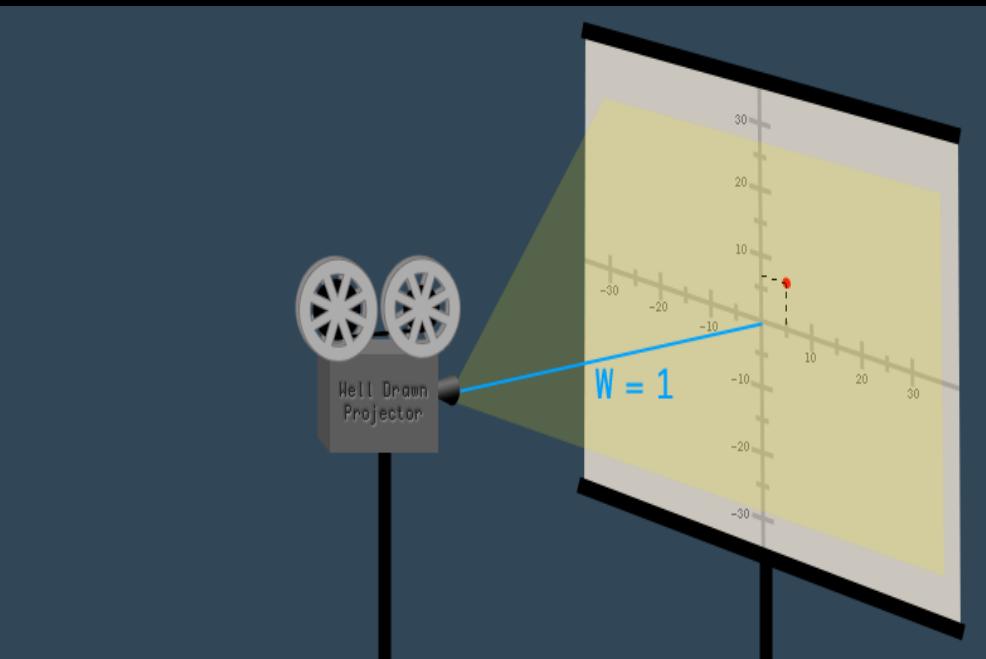
■ Camara:

- 3 m away from the image, $W=3$
- The **dot** on the image is at $(15, 21)$

■ The *projective coordinate point* is said to be

- $(15, 21, 3)$

Quiz 2: Homogeneous coordinates



SOLUTION:

We move closer to the image i.e. $W' = 1$ which scales with factor $(1/3)$ the projective point at $W=3$ accordingly:

$$(15*(1/3), 21*(1/3), 1) = (5, 7, 1)$$

A camara is placed at distance of 3 meter away from the image and the dot has the projective coordinate of $(15, 21, 3)$.

Now we move the camara closer to the image i.e., 1 m away. What is the new projective coordinate?

- A) $(5, 7, 1)$
- B) $(15, 21, 3)$
- C) $(45, 63, 1)$
- D) $(5, 7, 0.33)$
- E) $(0, 0, 0)$

Translation transformation as a matrix

In Euclidian space

$$\text{Translation: } \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$

In Projective space

$$\begin{bmatrix} x' \\ y' \\ z' \\ W \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ W \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ W \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} x' \\ y' \\ z' \\ W \end{bmatrix} = A_T \begin{bmatrix} x \\ y \\ z \\ W \end{bmatrix} \quad \text{where } A_T = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ Geometrical transformations

- Use Homogeneous coordinates
- Set $W=1$ we 'covert' 3D \rightarrow 4D space
- Translation transformation expressed as a **matrix A_T**

Transformations in Projective space

Translation: $A_T = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

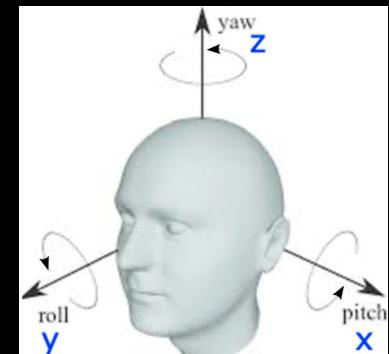
Rotations (right-hand rule):
- x=pitch
- y=roll
- z=yaw

$$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_y = \begin{bmatrix} \cos(\beta) & 0 \sin(\beta) & 0 \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \quad R_z = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling: $A_s = \begin{bmatrix} Sx & 0 & 0 & 0 \\ 0 & Sy & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Shear: $A_z = \begin{bmatrix} 1 & Sxy & Sxz & 0 \\ Sxy & 1 & Syz & 0 \\ Sxz & Syz & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Yaw-Pitch-Roll Euler convention



Affine transformation: $A = \underbrace{A_T * (R_z * R_x * R_y)}_{\text{Rigid}} * A_z * A_s$

Combining transformations – step by step

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ W \end{bmatrix} = A_T \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ W \end{bmatrix}$$

Remember:

- Typically calculated in *radians*
- *Same procedure for 2D and 3D images*

- Step 1: Convert 3D to 4D projective space, set $W=1$. Make translation into a matrix

$$A = A_T * (R_x * R_y * R_z) * A_z * A_s$$

- Step 2: Multiply all 4D matrices

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = A \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Step 3: Apply the transformation to a point

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = A \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Step 4: Convert back to 3D Cartesian coordinates by ignoring the W dimension

Different transformations

- Linear: Affine transformation
- Non-linear: Piece-wise affine or B-spline
 - Remember: First to apply the linear transformations!

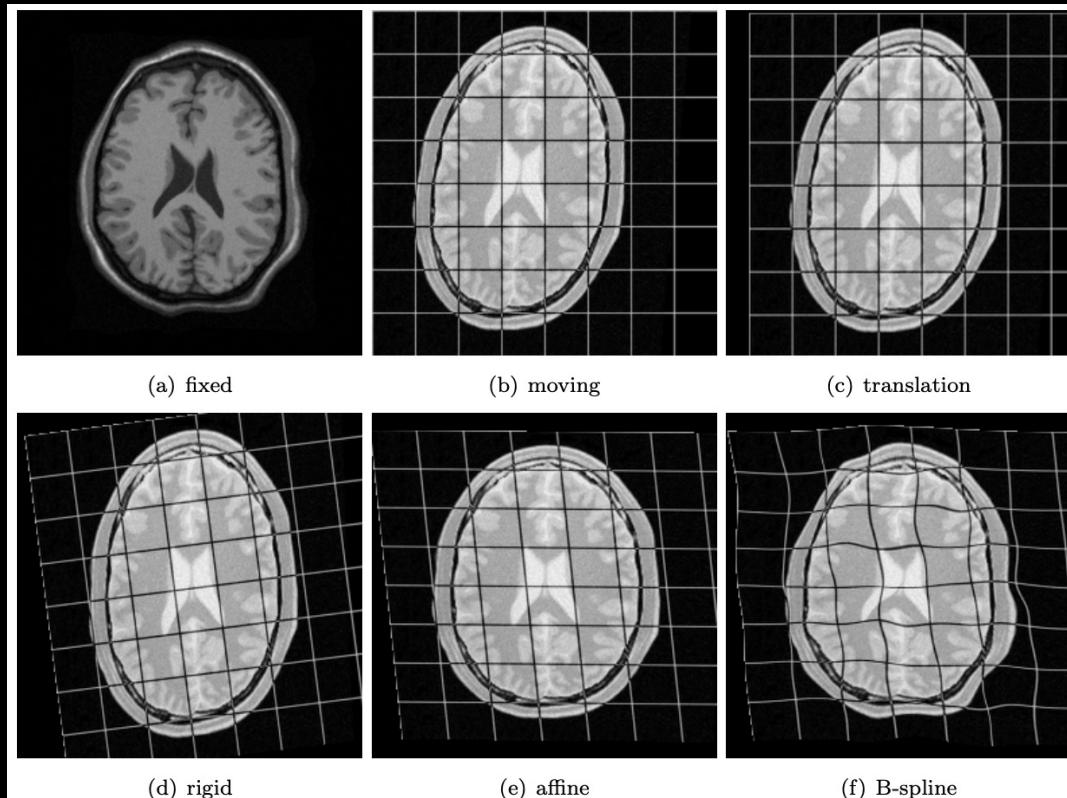
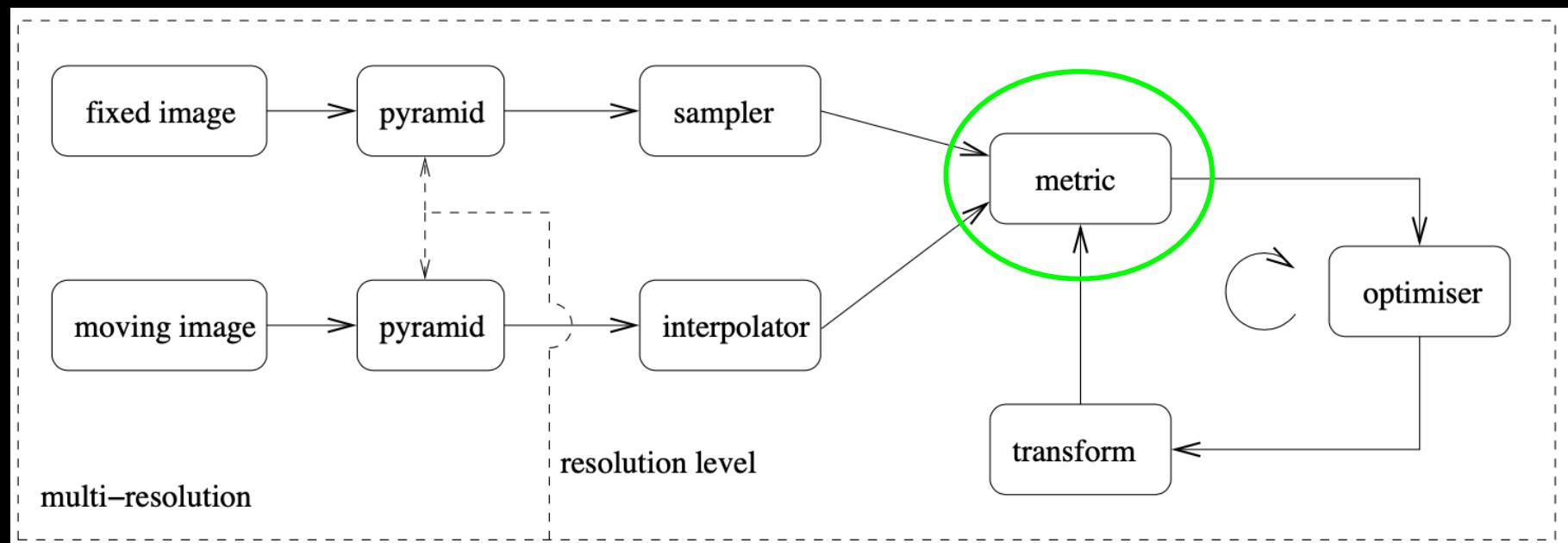


Image Registration pipeline

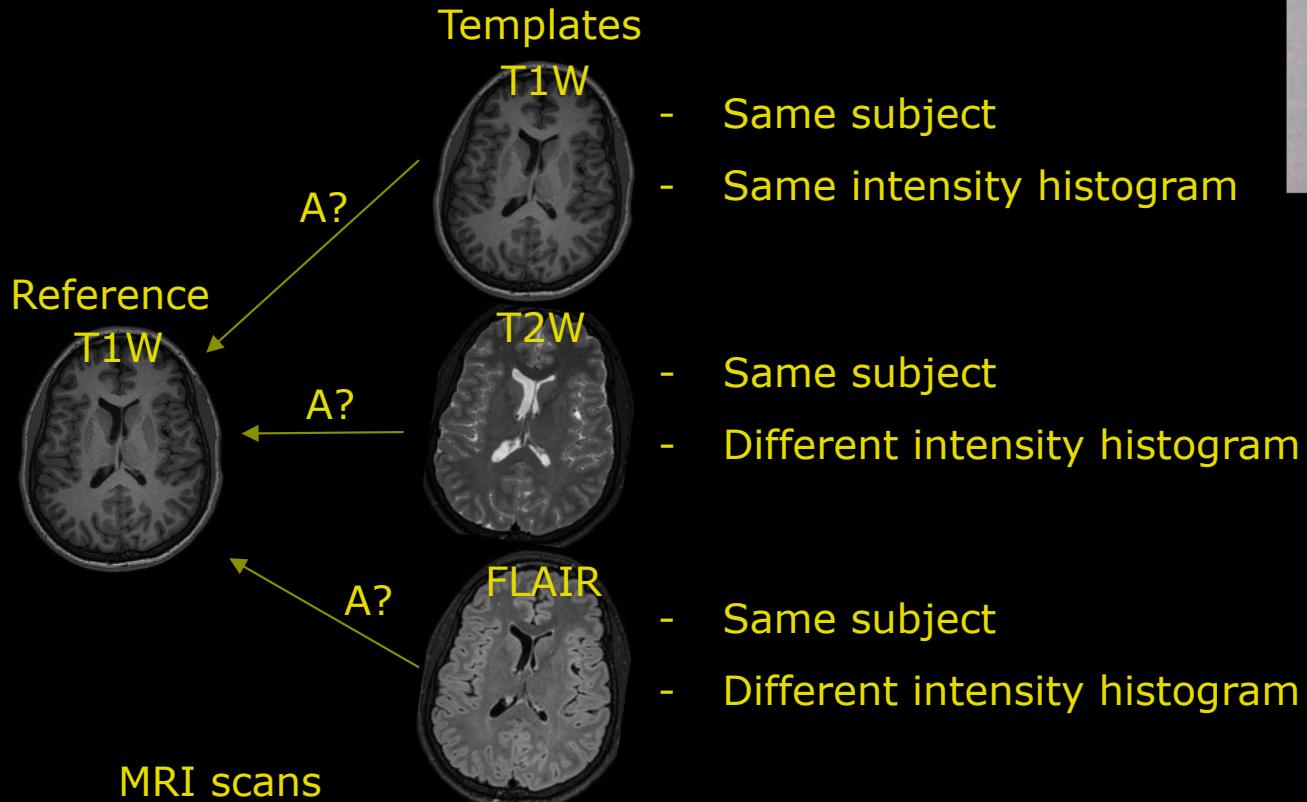
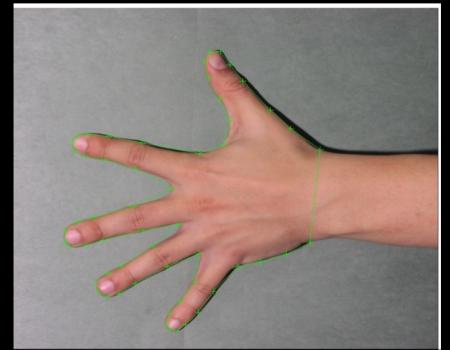
■ Similarity measures



Similarity measures

■ Anatomical Landmarks

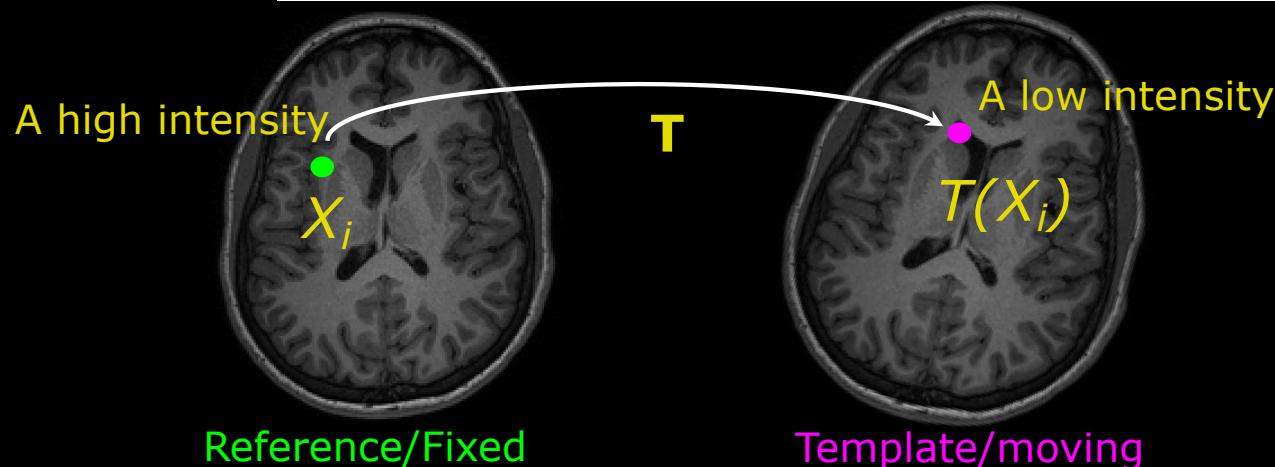
- time consuming to obtain positions manually
- Alternative: **Joint intensity histogram**



Similarity measure: Mean squared difference (MSD)

- Compare difference in intensities.
 - Same similarity measure we used for anatomical landmarks (positions) in a previous lecture
 - Fast to estimate
- Many local minima's (sub optimal solutions)
 - Intensities are not optimal for this similarity metric

$$\text{MSD}(\boldsymbol{\mu}; I_F, I_M) = \frac{1}{|\Omega_F|} \sum_{\mathbf{x}_i \in \Omega_F} (I_F(\mathbf{x}_i) - I_M(\mathbf{T}_{\boldsymbol{\mu}}(\mathbf{x}_i)))^2,$$



Is T optimal?

NO!

- Big intensity difference
- Large MSD error

Similarity measure: Normalised Cross-correlation

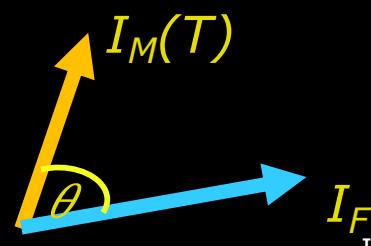
- Normalised Cross-correlation of intensities in two images
 - Fast to estimate
- Risk of local minima's (sub optimal solutions)
 - Less robust if image modalities have different intensity histograms
 - Normalise: Reduce the impact of outlier regions

$$\text{NCC}(\boldsymbol{\mu}; I_F, I_M) = \frac{\sum_{\mathbf{x}_i \in \Omega_F} (I_F(\mathbf{x}_i) - \bar{I}_F) (I_M(T_{\boldsymbol{\mu}}(\mathbf{x}_i)) - \bar{I}_M)}{\sqrt{\sum_{\mathbf{x}_i \in \Omega_F} (I_F(\mathbf{x}_i) - \bar{I}_F)^2 \sum_{\mathbf{x}_i \in \Omega_F} (I_M(T_{\boldsymbol{\mu}}(\mathbf{x}_i)) - \bar{I}_M)^2}},$$

with the average grey-values $\bar{I}_F = \frac{1}{|\Omega_F|} \sum_{\mathbf{x}_i \in \Omega_F} I_F(\mathbf{x}_i)$ and $\bar{I}_M = \frac{1}{|\Omega_F|} \sum_{\mathbf{x}_i \in \Omega_F} I_M(T_{\boldsymbol{\mu}}(\mathbf{x}_i))$.

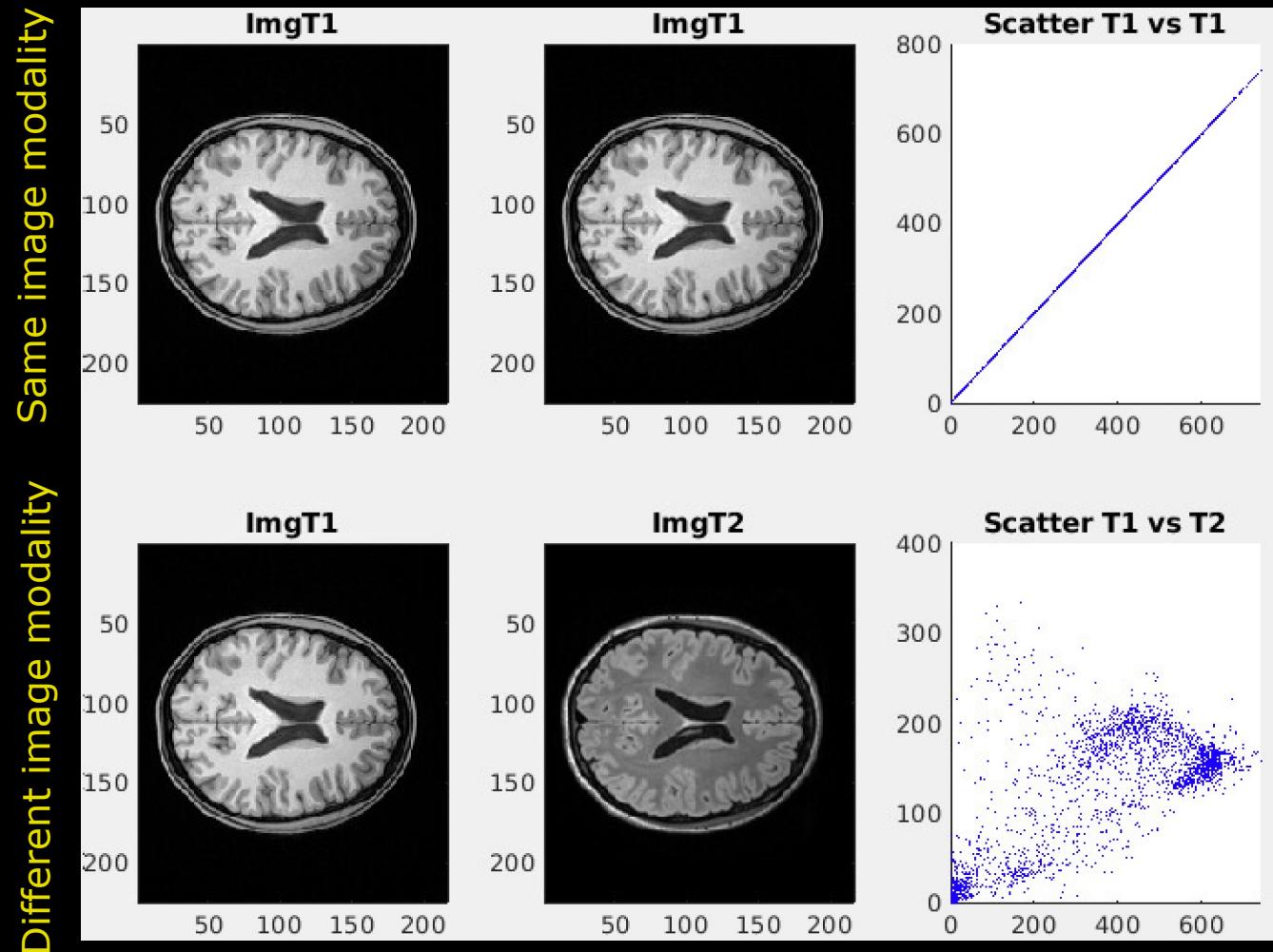
- Multiplication is a dot product

- $I_F \cdot I_M(T) = \|I_F\| \|I_M(T)\| \cos \theta$



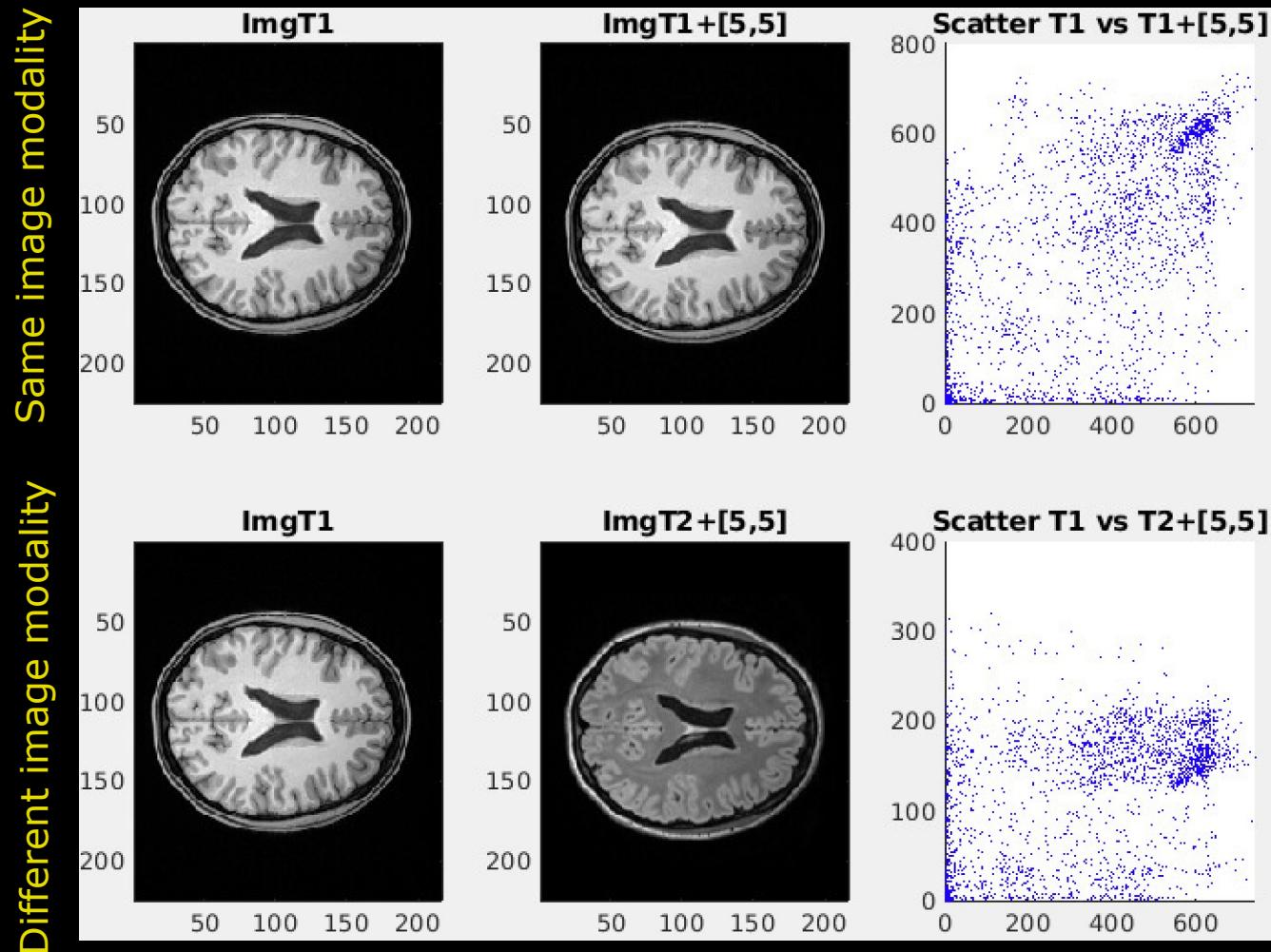
Joint intensity histograms

- Perfect registered: Optimal joint intensity agreement



Joint intensity histograms

- Small translation difference: Lower joint intensity agreement



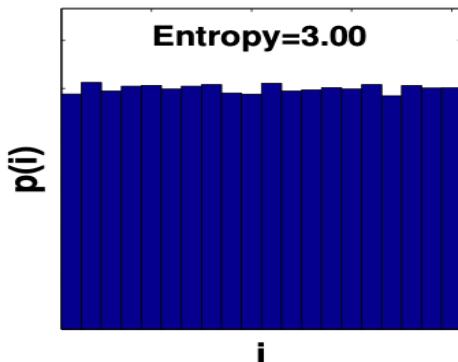
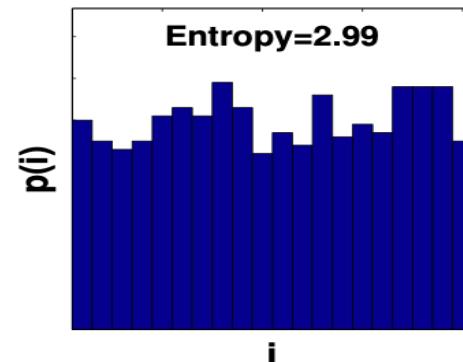
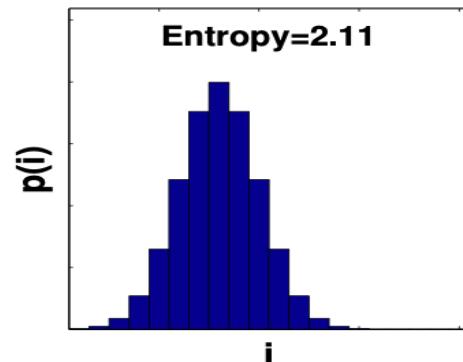
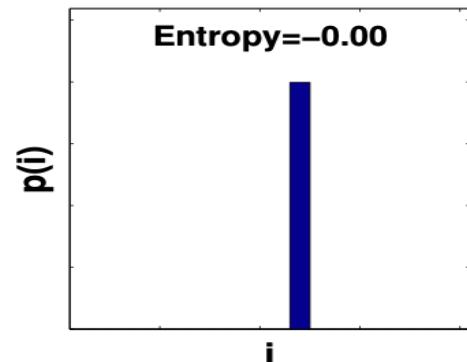
Similarity measure - Entropy

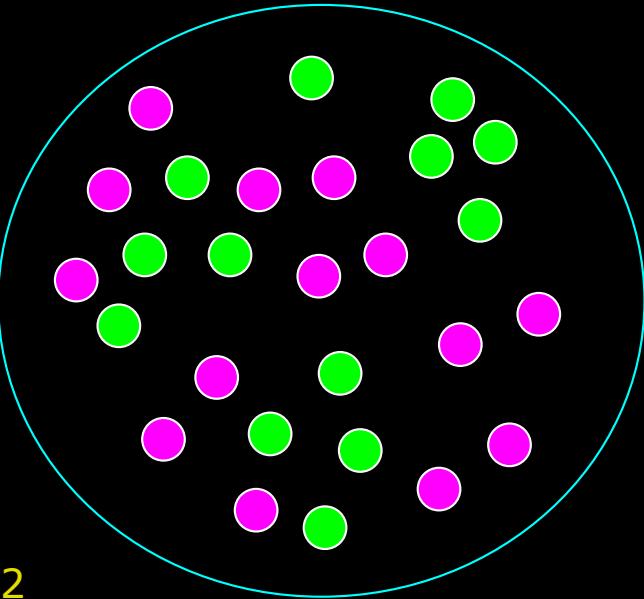
- Comes from information theory.
 - The higher the entropy the more the information content.
- Entropy (Shannon-Weiner):

$$H = -\sum_i p_i \log_b p_i$$

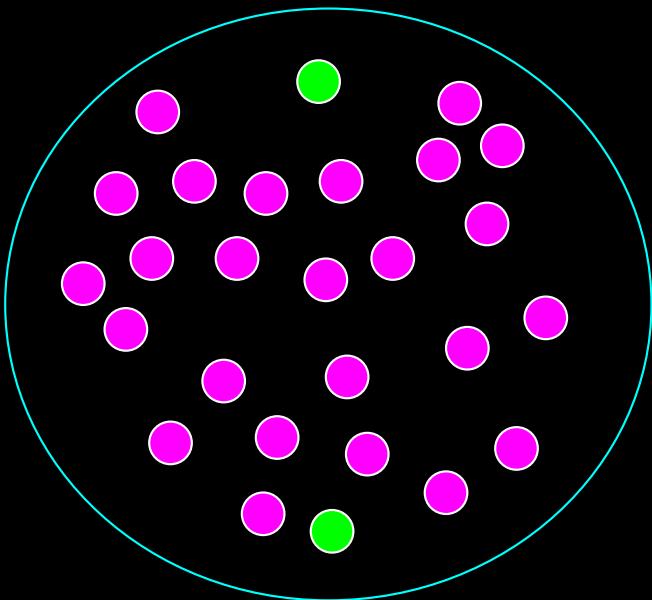
Where b : the base of the logarithm

- Bits: $b=2$ and bans: $b=10$
- Entropy is typically in bits i.e. typical used in digital information





Candy mix 2



A) Mix 1

B) Make a new choice

C) Contain no liquorice

D) Mix 2

E) It is not healthy

Quiz 4: What is the entropy of the candy mix 1?

- A) 0.38
- B) 0.99**
- C) 0.45
- D) 0.23
- E) 0.00

SOLUTION:

Green=13

Pink=14

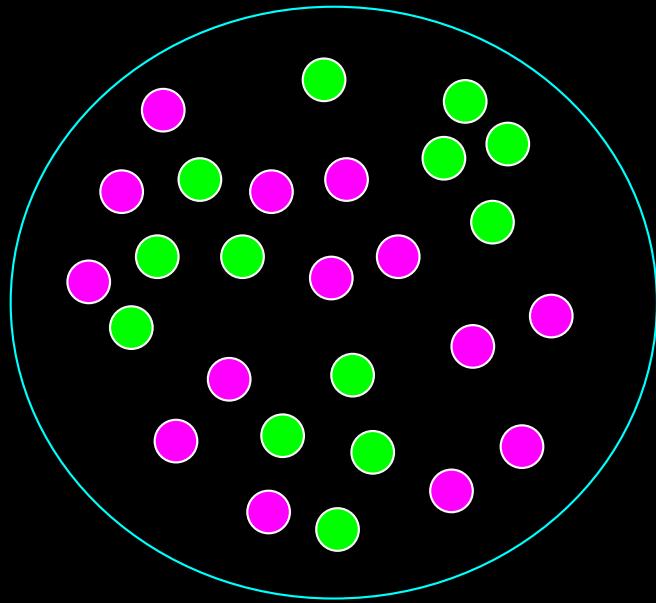
Total=27

$$pG = 13/27$$

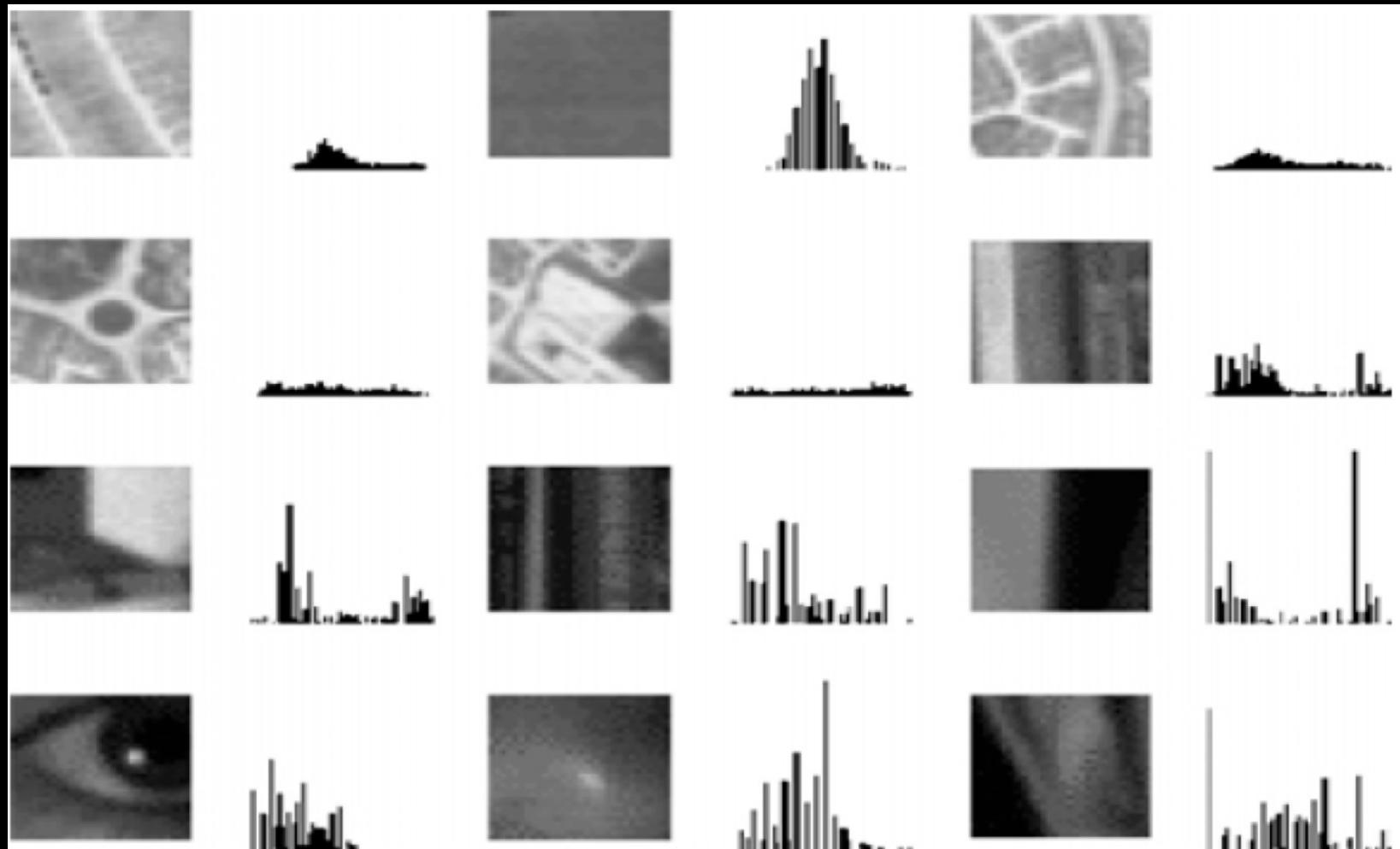
$$pP = 14/27$$

$$\text{Entropy} = -pG \log_2(pG) - pP \log_2(pP) = 0.99$$

Candy mix 1



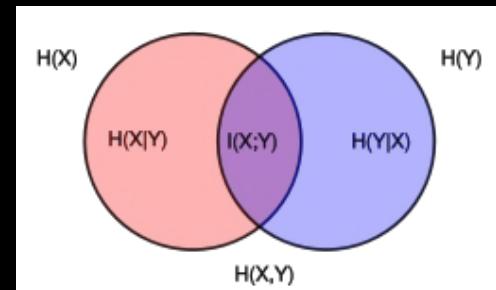
Histograms of images



Joint entropy - Mutual information

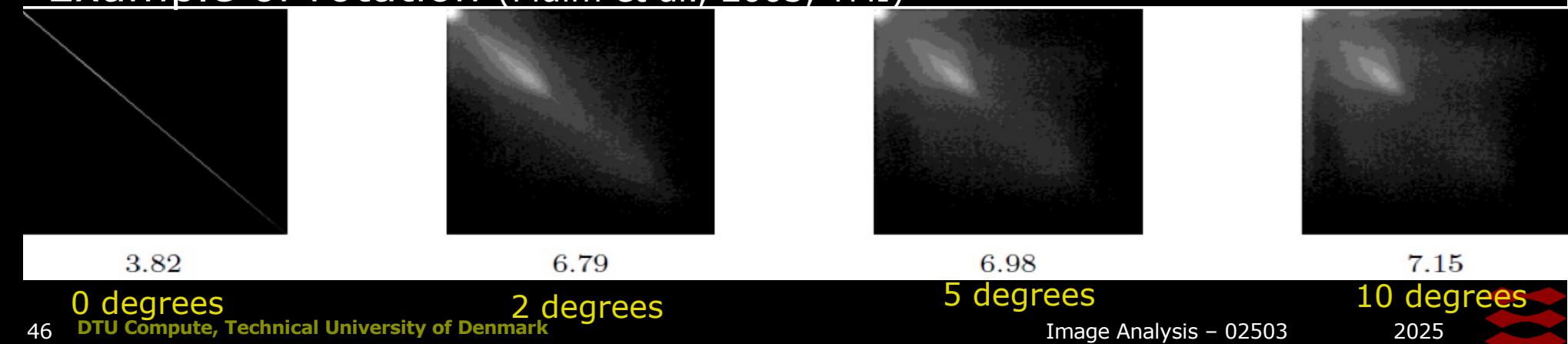
- Joint entropy $H(X, Y) = -\sum_{X,Y} p_{X,Y} \log p_{X,Y}$
- Similarity measure: The more similar the distributions, the lower the joint entropy compared to the sum of the individual entropies i.e., total area is less spread out

$$H(X, Y) \leq H(X) + H(Y)$$



en.wikipedia.org/wiki/Mutual_information

- Example of rotation (Pluim et al., 2003, TMI)



Contrast in joint histograms

- The histogram of the two images must reflect contrast to similar structures for image registration to be successful

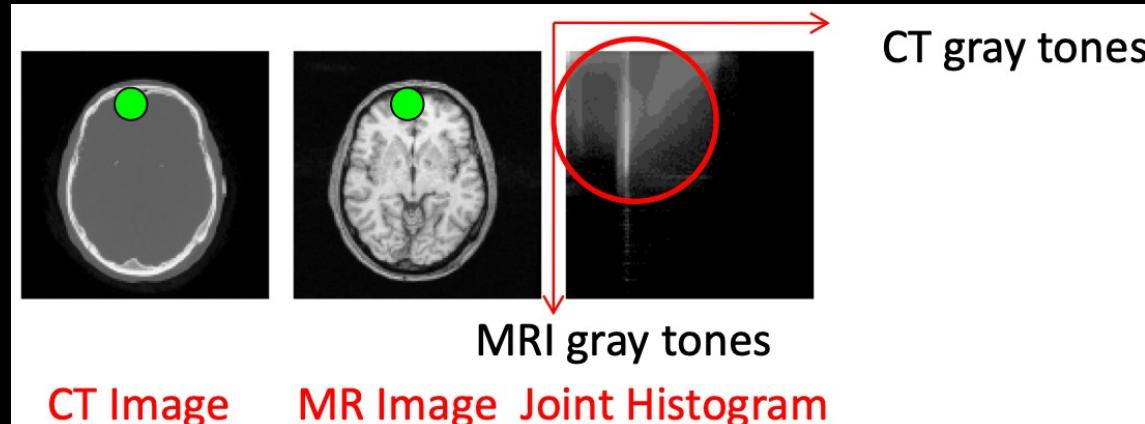
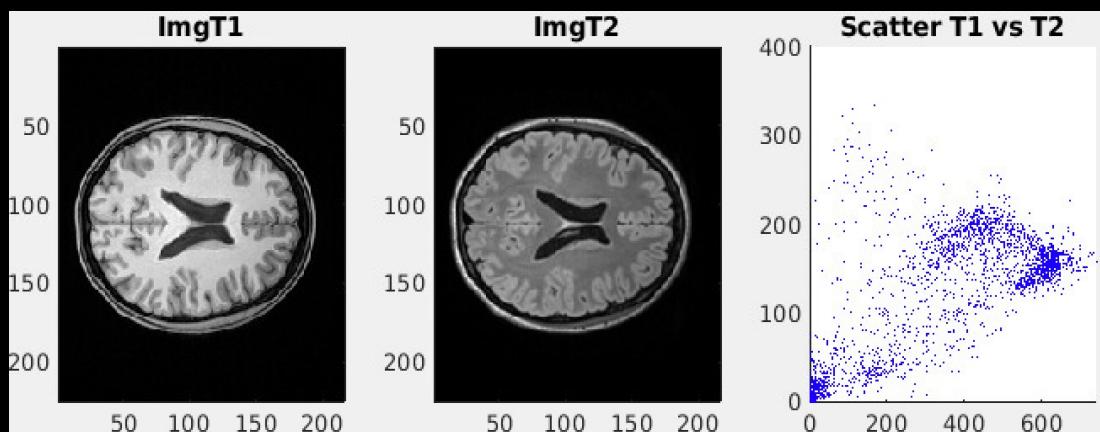
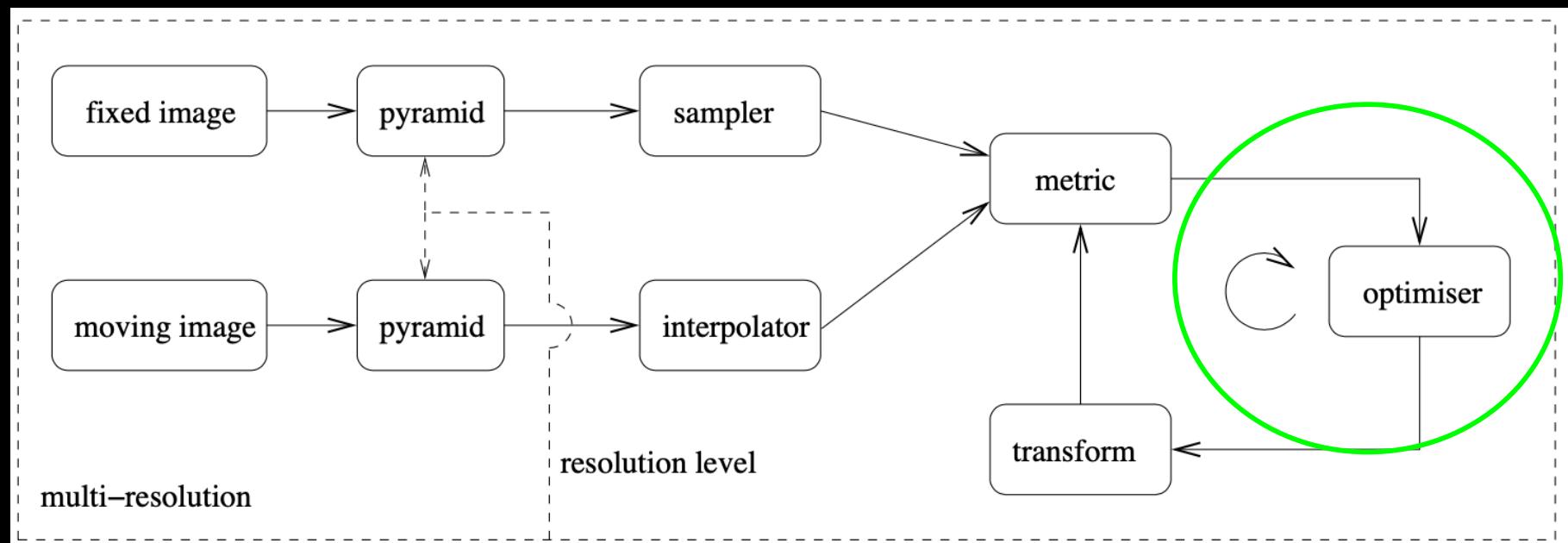


Image Registration pipeline

- The optimiser
 - How to find the transformation parameters?



The optimizer

- We have an **objective function** describing:
 - A **cost function** (C) based on a **similarity metric**
 - Quantifying how well a **geometrical transformation** ($T(w)$) maps an image (moving, I_M) into another (fixed, I_F)
- Hence, a good match is a minimum difference:

$$\hat{T}_w = \arg \min_{T_w} C(T_w; I_F, I_M)$$

The parameters

$$w \in \mathcal{R}^p$$

- The parameters is a vector with p elements
- The type of transformation and the dimension of the dataset set the number of parameters
 - Translation $p = 2$ or 3 (3D)
 - Rotation $p = 1$ or 3 (3D)
 - Scaling $p = 1$

Optimization by minimization

- Find the parameter set that minimizes the objective function
- How to find the solution?
 - Analytical: Works fine for translation (previous lecture)
 - Numerical: Iterative approaches to search for affine transformations

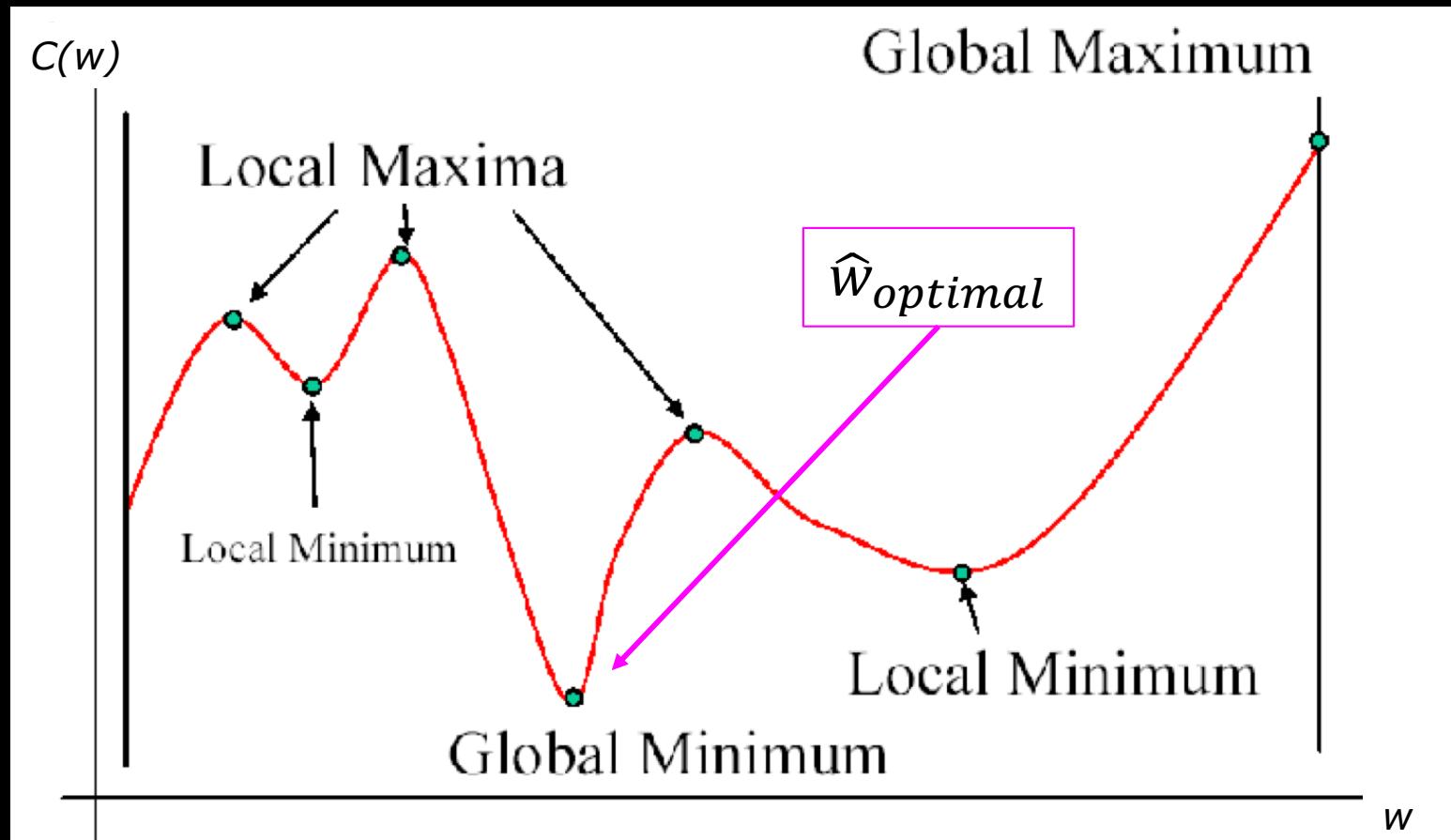
To find: $\hat{w} = \arg \min_w C$

We simply differentiate w.r.t. w :

$$\frac{\partial C}{\partial w} = 0$$

The challenge

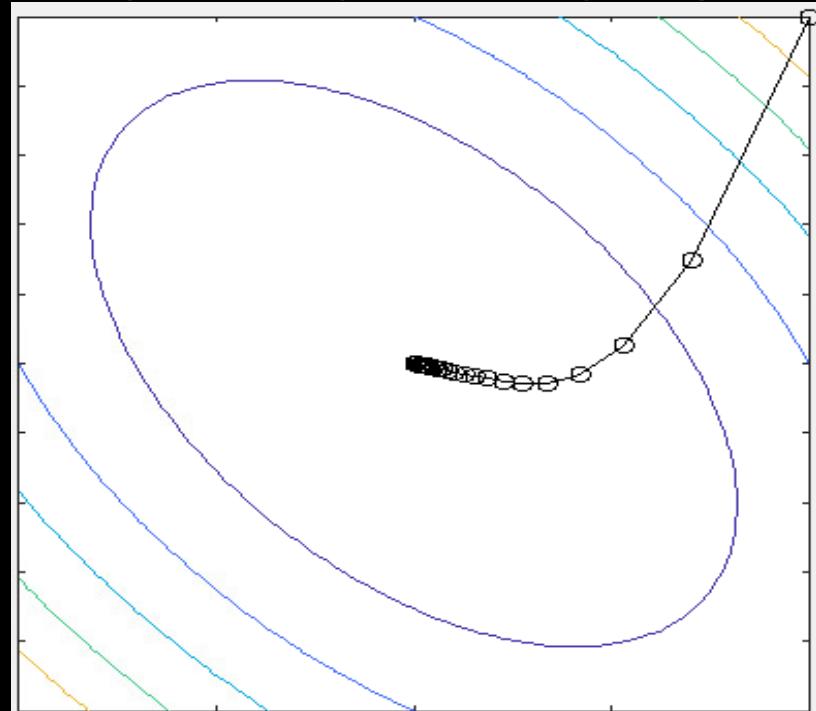
- w span a p-dimensional space $w = [w_1, w_2, \dots, w_p]^T$
- Complex parameter space with many data points
 - Finding the lowest place in mountains



Iterative optimisation

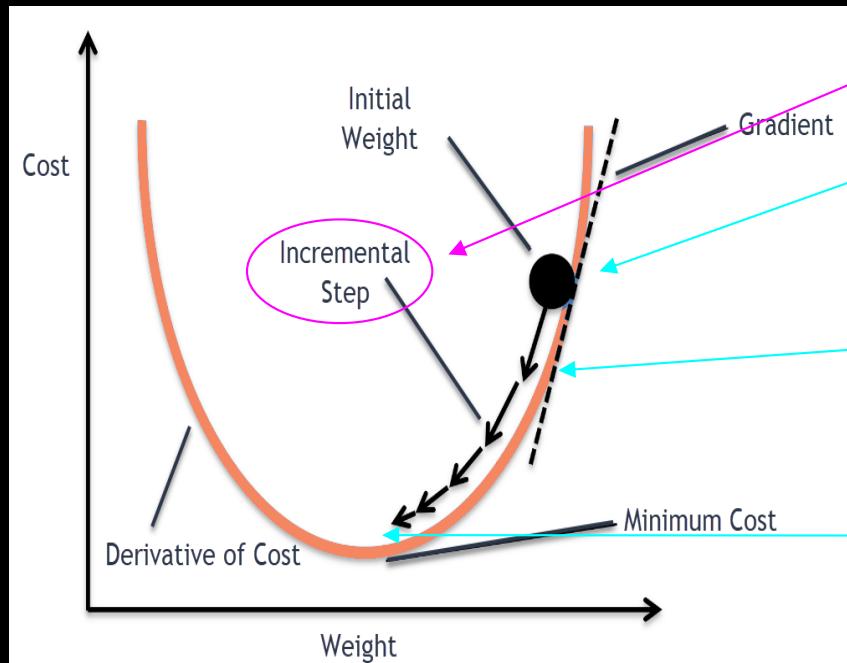
- Aim: Find in parameter space w : $\frac{\partial C}{\partial w} = 0$ i.e. a global minima
 - Search all possible combinations of w ? (not a good idea)
 - Systematically search the parameter space = Good idea
- Iterative optimisation strategies
 - Step-wise searching the parameter space
- Many methods exist
 - Gradient based
 - Genetic evolution
 - ...

Contour plot of 2D parameter space (w_1, w_2)



Gradient descent

- Definition: $C(\mathbf{w})$ is differentiable in neighbourhood of a point w_n
- $C(\mathbf{w})$ decreases in the *negative* gradient direction of w_n .
- $w_{n+1} = w_n - \gamma \nabla C(w_n)$
 - $\nabla C(w_n)$: Gradient direction at point w_n
 - γ : Step length --> If small enough: $C(w_n) \geq C(w_{n+1})$



Procedure:

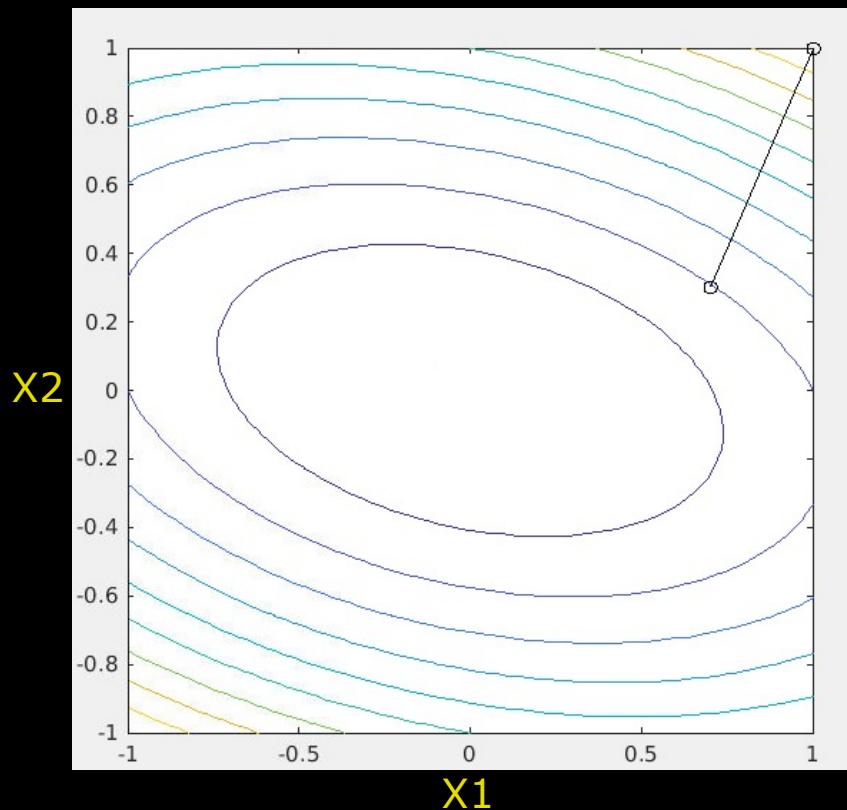
- γ Define a step length
- 0) Define a step length
- $\nabla C(w_0)$ 1) Start guess of a position
- 2) Find gradient
- 3) Take a step
- $\nabla C(w_1)$ 4) Repeat 2)+3)
- 5) Solution: Global minima

$$\nabla C(w_{n+1}) = \frac{\partial C}{\partial w} \approx 0$$

Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[1,1]^T$

Iteration: 1

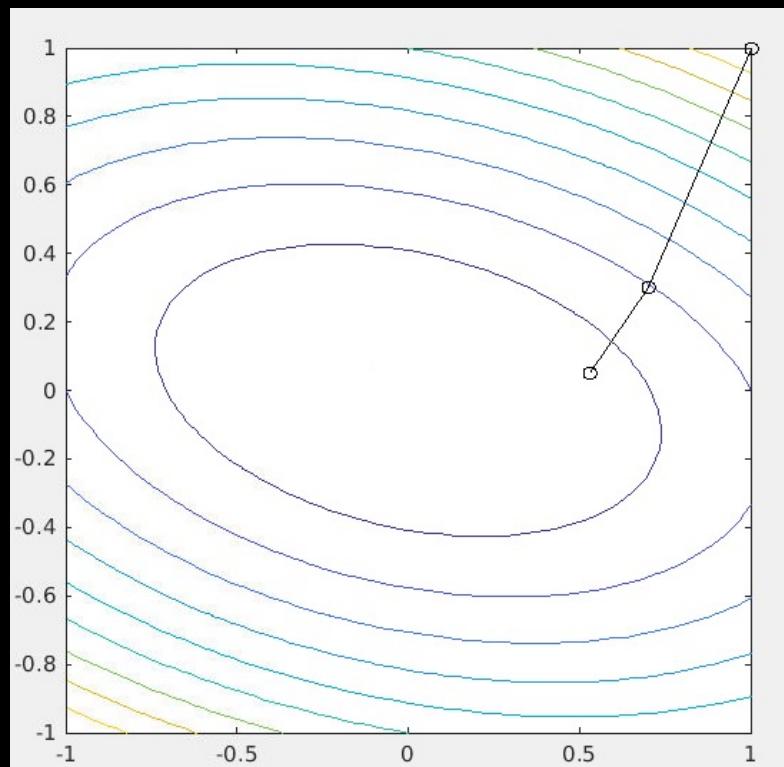


From a Matlab function: *grad_descent.m*
By James T. Allison

Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[1,1]^T$

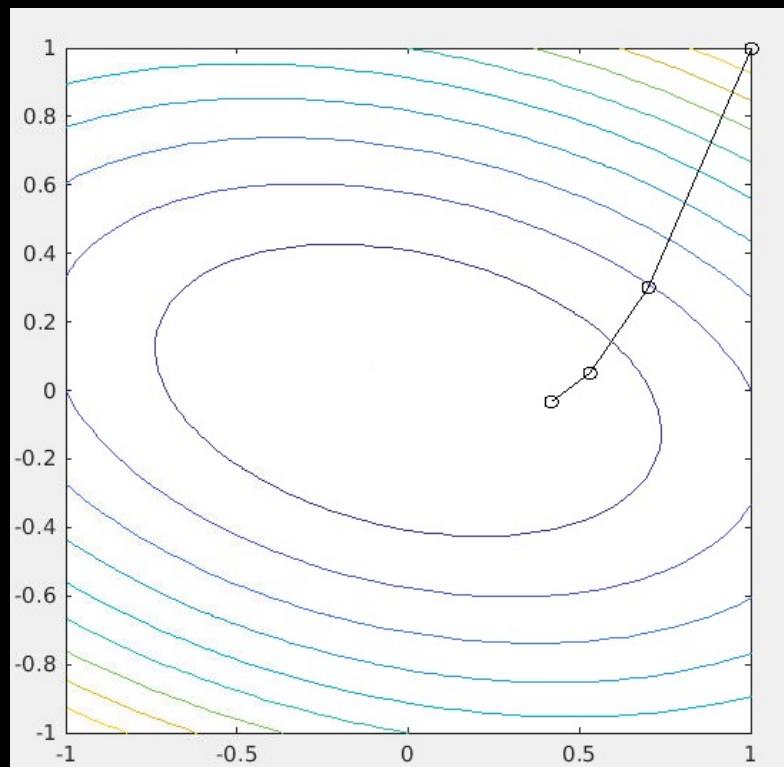
Iteration: 2



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[1,1]^T$

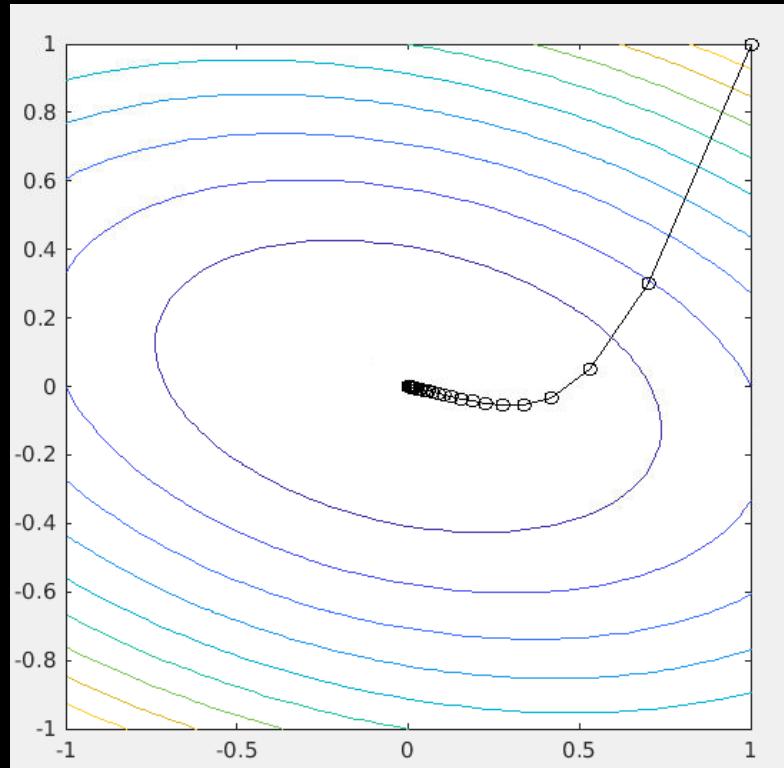
Iteration: 3



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[1,1]^T$

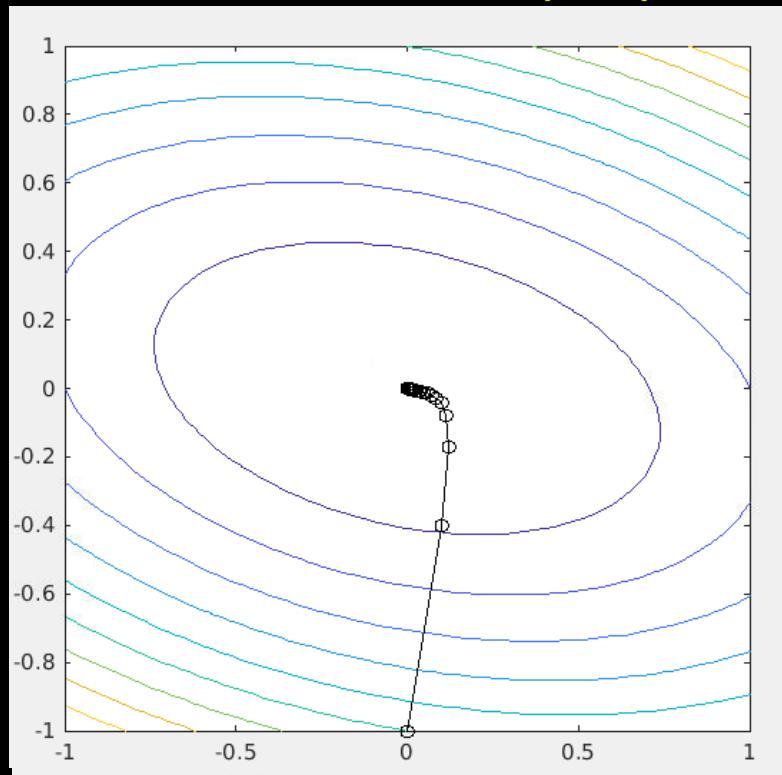
Iteration: 37 (final)



Gradient descent

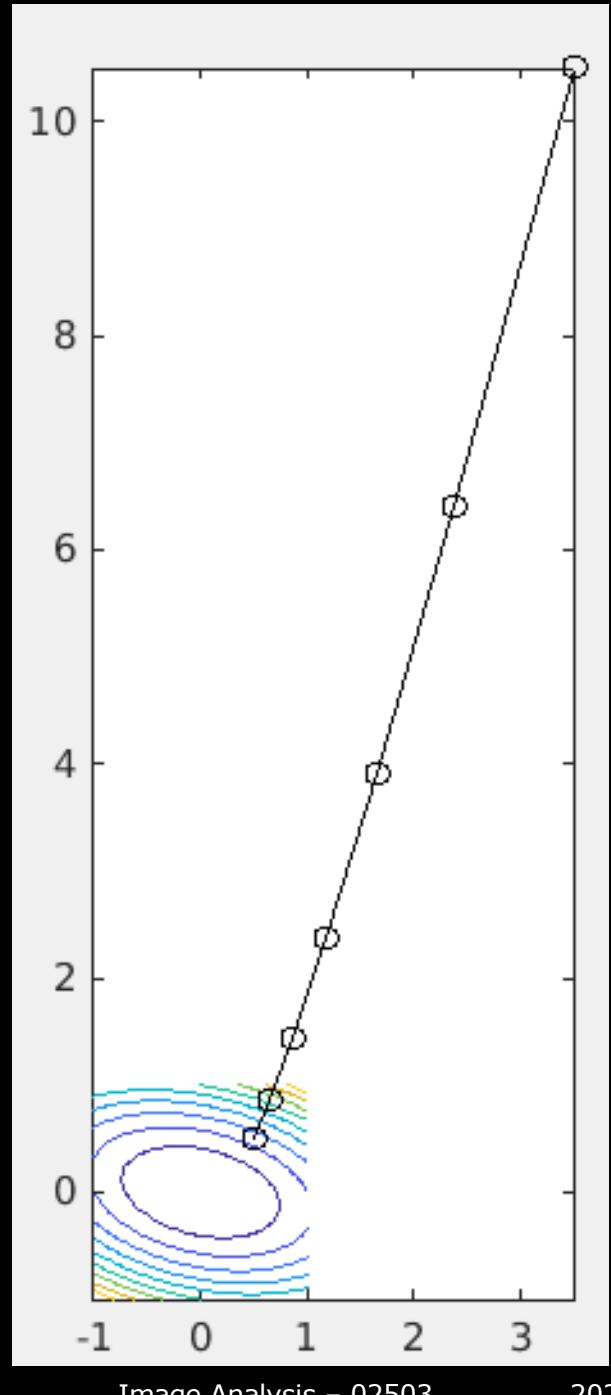
- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[0, -1]^T$
- Can find solution from any place
- No local minima's nearby

Iteration: 31 (final)



Gradient descent

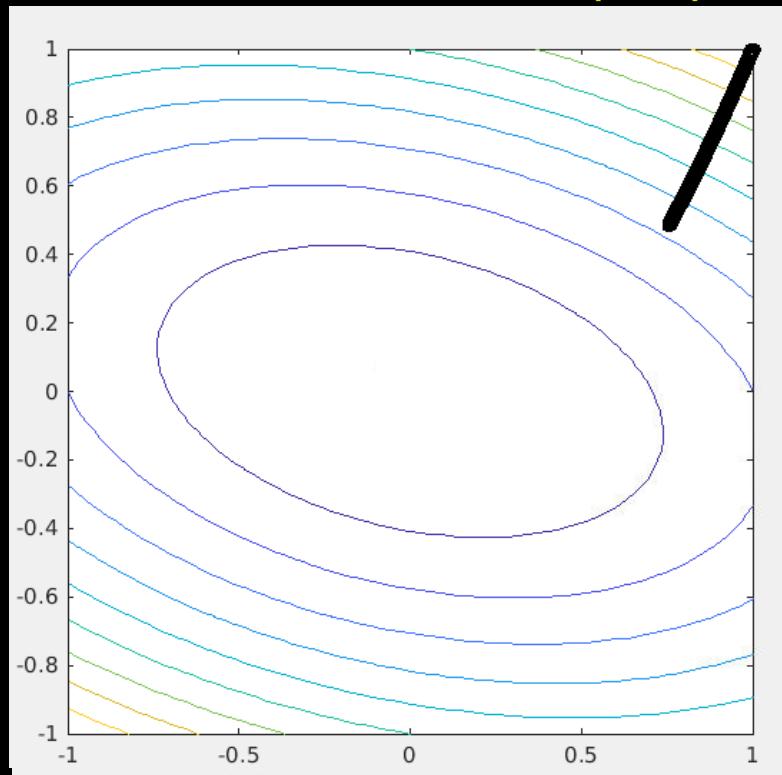
- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $+\nabla C(x_n) = + \begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$;
- Max steps: 1000
- Start position: $x_0=[0.5,0.5]^\top$
- If use positive gradient
 - WRONG DIRECTION!



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.0001$;
- Max steps: 1000
- Start position: $x_0=[1,1]^T$
- Too small step size –many steps
- Do not find a solution

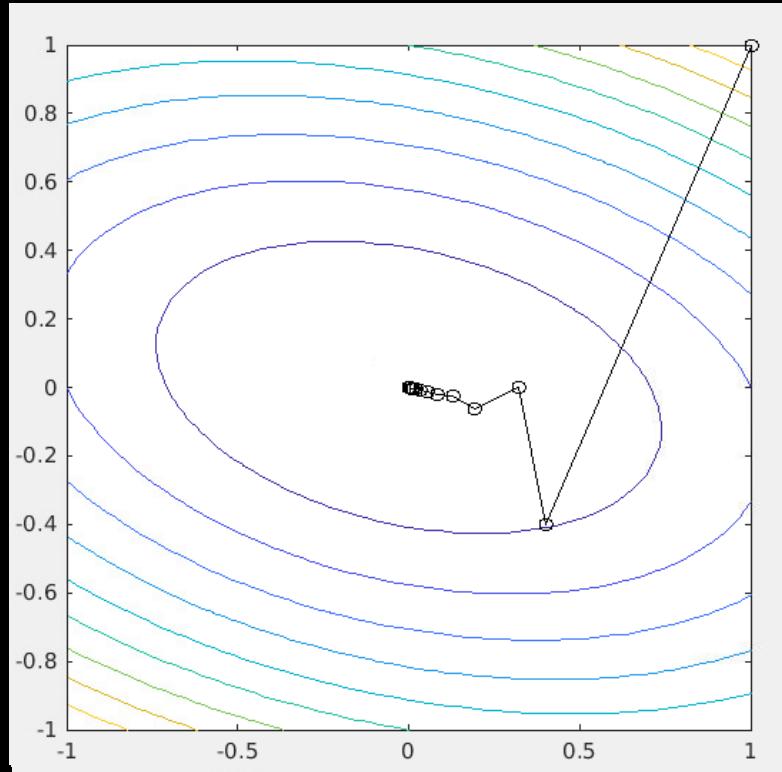
Iteration: 1000 (final)



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.2$ (optimal)
- Max steps: 1000
- Start position: $x_0=[1,1]^T$
- Few steps: Optimal step size

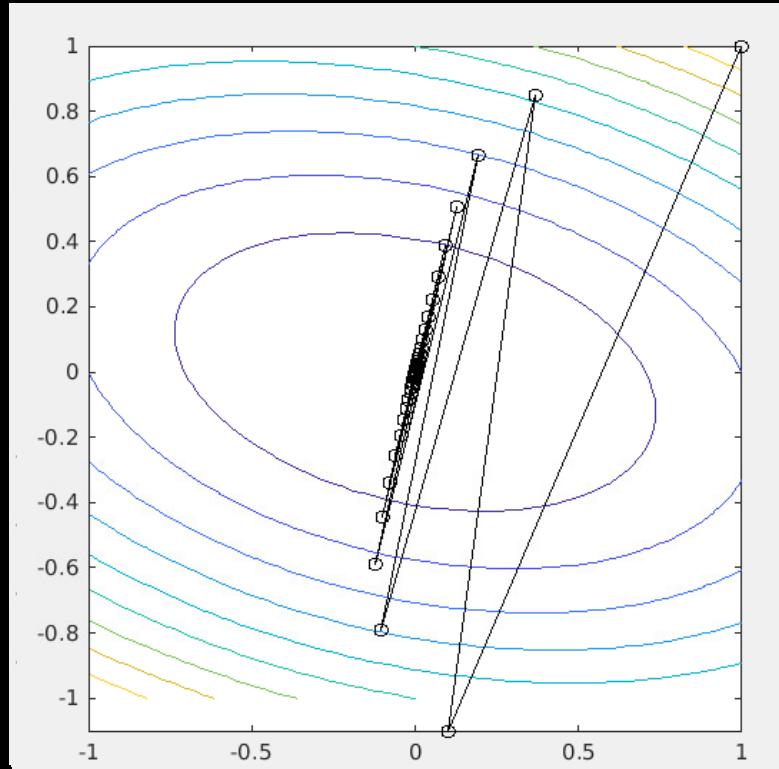
Iteration: 17 (final)



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.3$
- Max steps: 1000
- Start position: $x_0=[1,1]^T$
- Too large step size – unstable
- Sensitive to local minima's
- Solution: Dynamic step length

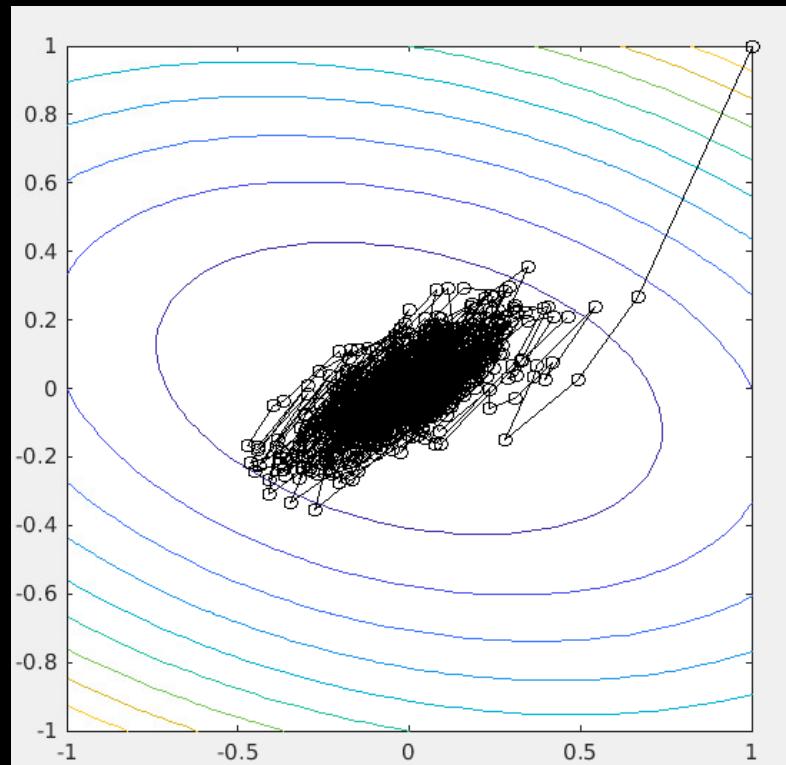
Iteration: 65 (final)



Gradient descent

- Cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
- Gradient at point x_n : $-\nabla C(x_n) = -\begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$
- Step length: $\gamma=0.1$
- Max steps: 1000
- Start position: $x_0=[1,1]^T$
- Noisy data: Cannot find optimum

Iteration: 1000 (final)



Quiz 5: What is the updated position x_{new} ?

Model fitting uses a cost function: $C(x) = x_1^2 + x_1x_2 + 3x_2^2$
and an iterative optimizer Gradient descent with a step length of 0.2

What is the new position of $x_{\text{new}} = [?, ?]^T$ after one step from position $x = [1, 0]^T$?

- A) $[0.3, 2.3]^T$
- B) $[-1.7, 0.3]^T$
- C) $[1.4, 0.2]^T$
- D) $[0.6, -0.2]^T$
- E) $[5.2, 2.2]^T$

Solution:

1) Calculate the gradient for $x = [1, 0]^T$

- differentiate C : $\nabla C(x) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 + 6x_2 \end{bmatrix}$

$$\nabla C([1, 0]^T) = [2, 1]^T$$

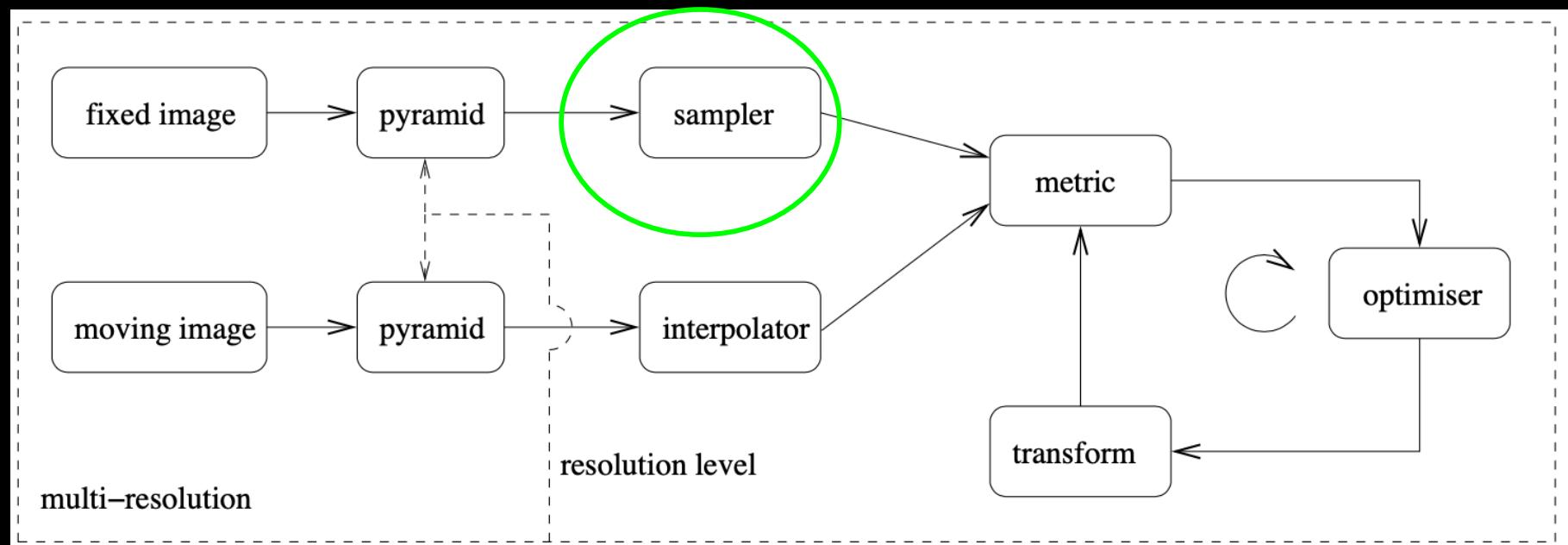
2) Update the step: $x_{\text{new}} = x - \nabla C * \text{stepLength}$

- $x_{\text{new}} = [1, 0]^T - 0.2 * [2, 1]^T = [0.6, -0.2]^T$

Image Registration pipeline

■ The sampler

- How many data points for a robust similarity measure?



The sampler

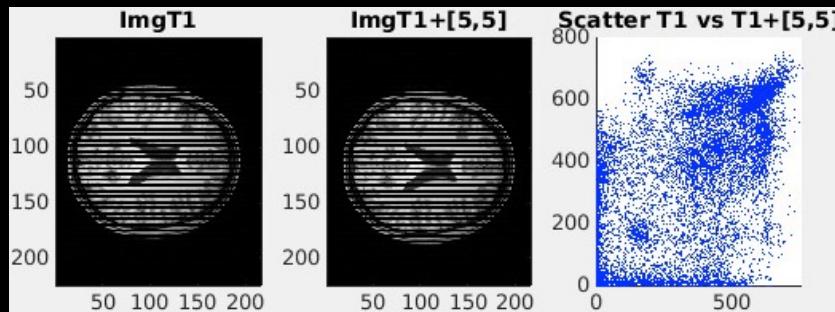
- Calculating the similarity metrics:
 - Summing over all pixels/voxels in an image is VERY time consuming
- Selecting a sparse sampling strategy
 - Reducing CPU load and reduce memory load when
 - Efficient selection of image points

The sampler

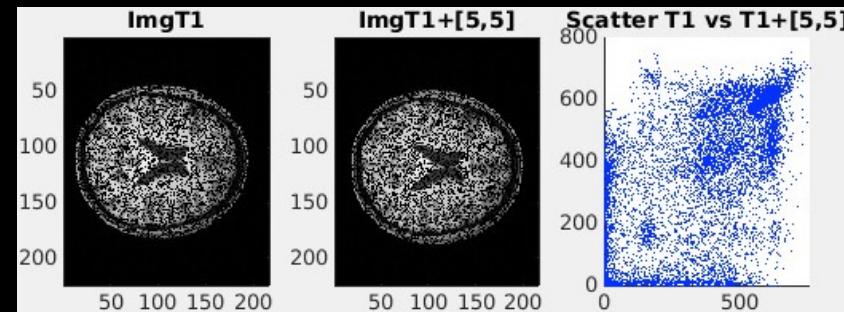
- Sparser sampling: Similar scatter plot
 - Define a good compromise (sample the whole image)
- Ordered vs Random
 - Spatial dependency: Dependent on large homogeneous structures
 - Very sparse sampling: Risk not sampling small structures

Every 2nd

Ordered



Random



Every 10th

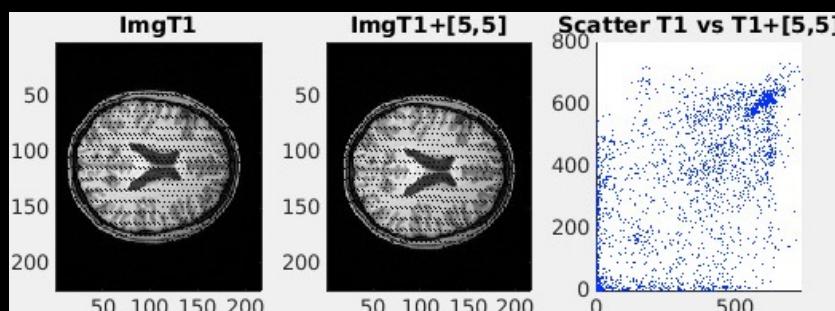
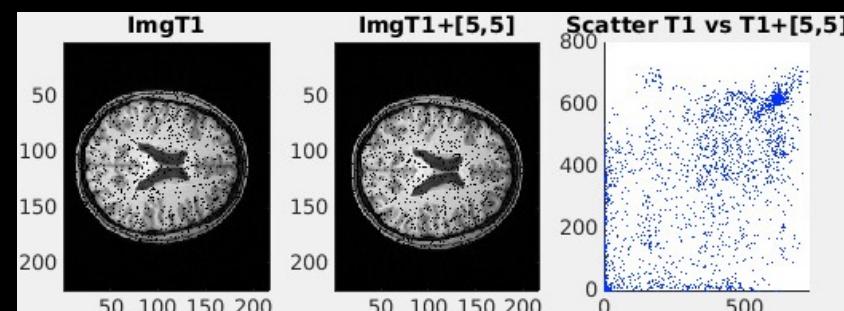
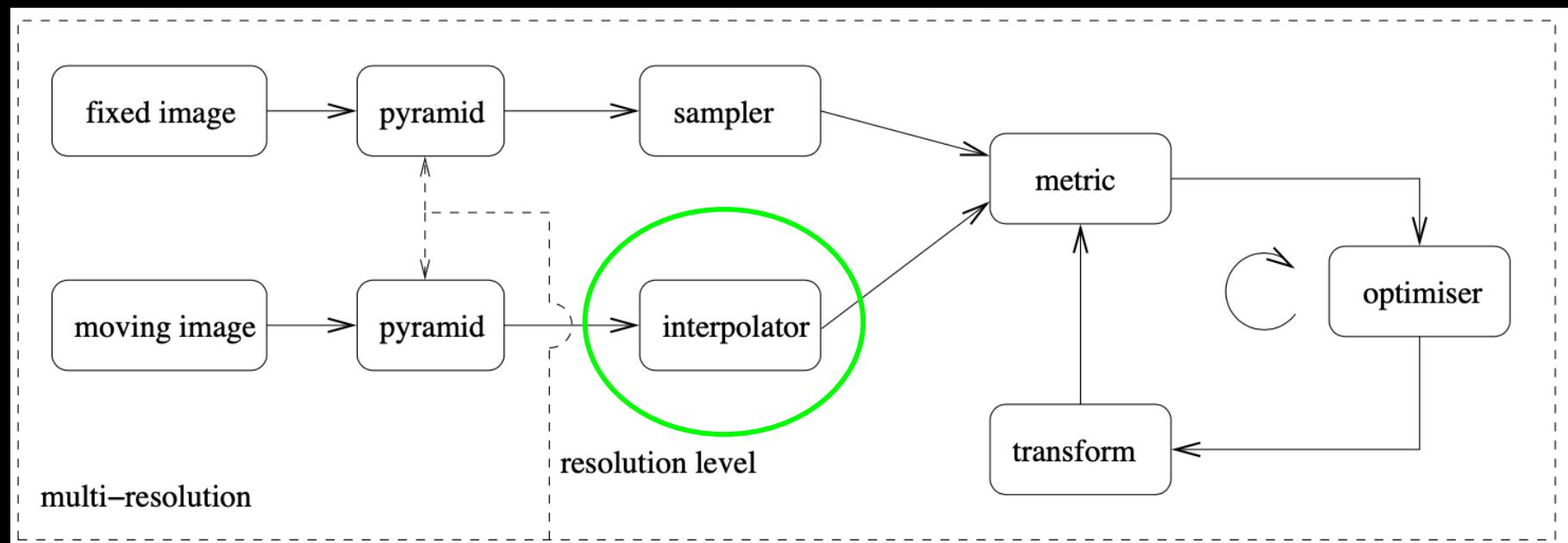


Image Registration pipeline

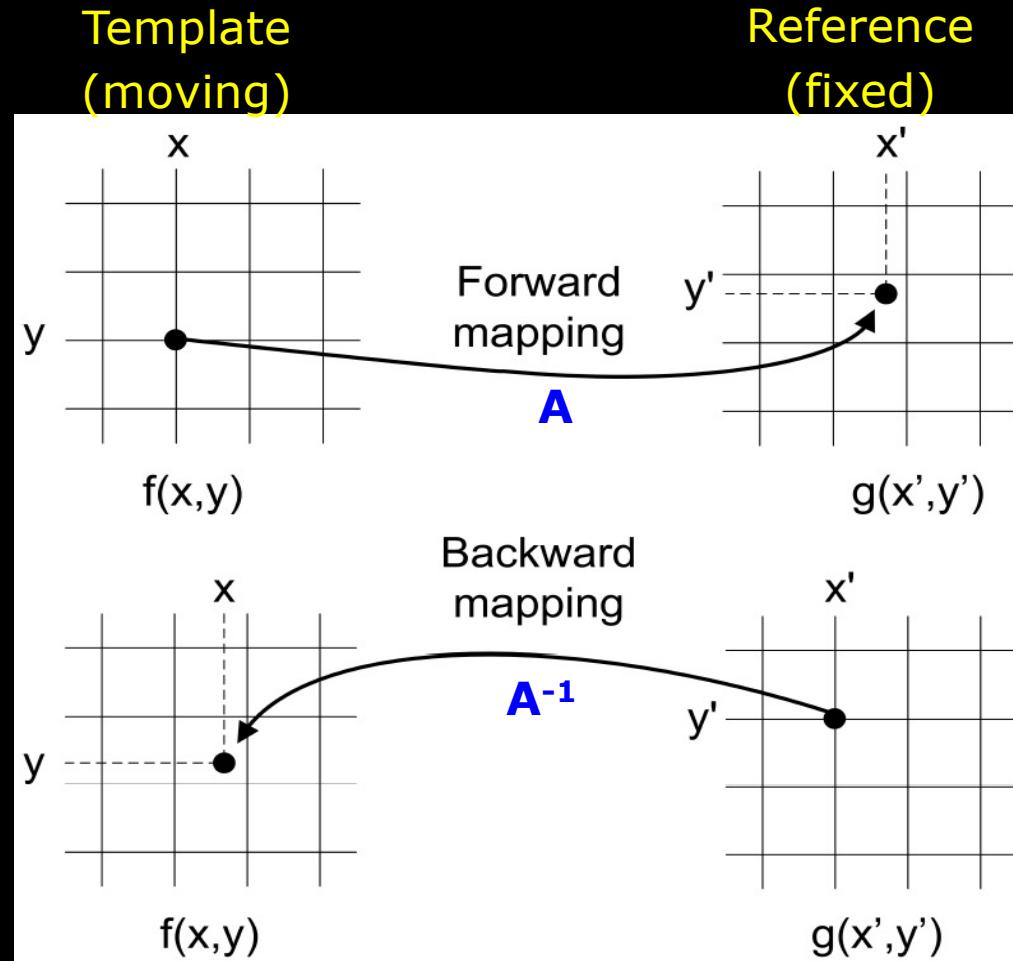
■ Interpolation

- To map the intensities from the template image to the grid of the reference image via a transformation matrix



A FLASH BACK to a previous Lecture: Forward vs Backward mapping

- In a nutshell
 - Going backward we need to invert the transformation



Interpolation methods

- Enhances structural boundaries
 - Higher-order interpolation methods: Reduce blurring
- May visually appear “sharper”
 - Do not change the image information!
 - Only if combining interpolated images w. different information of the same object – e.g. different angles of moving object e.g. car
 - Super resolution (another topic)

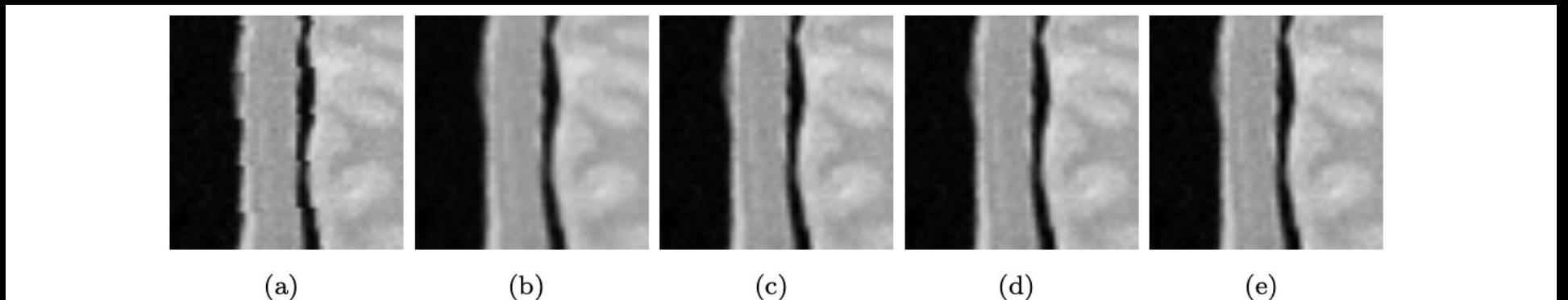
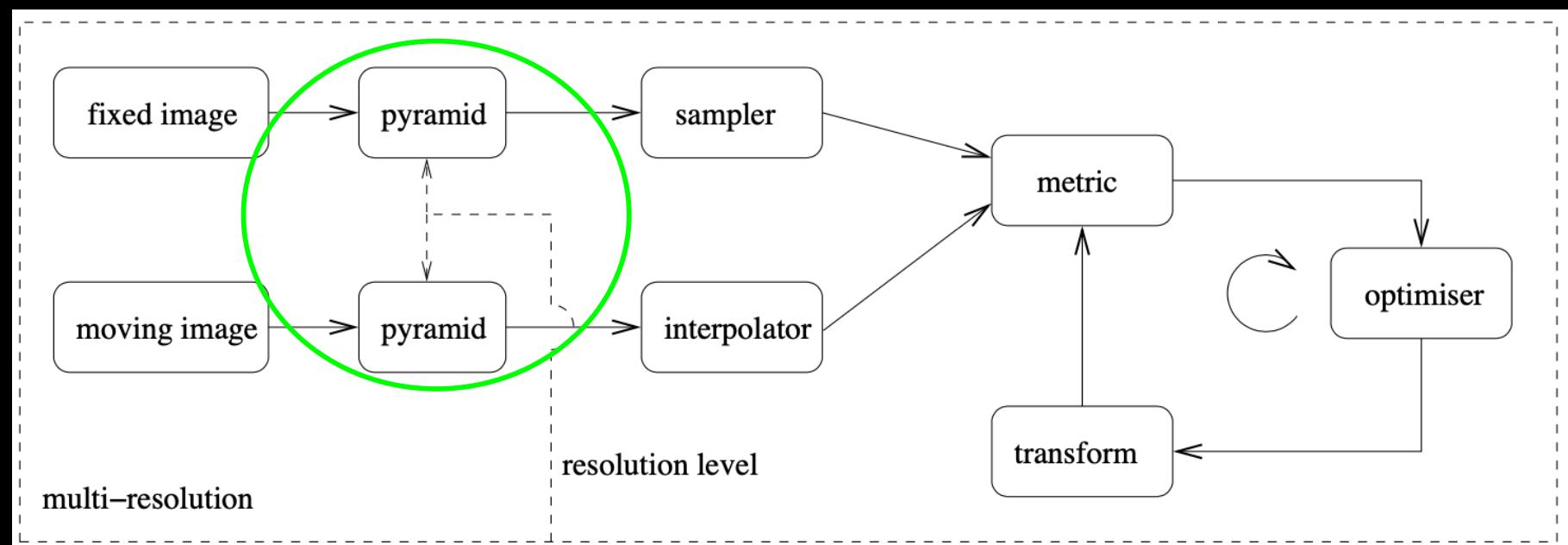


Figure 2.4: Interpolation. (a) nearest neighbour, (b) linear, (c) B-spline $N = 2$, (d) B-spline $N = 3$, (e) B-spline $N = 5$.

Image Registration pipeline

■ Pyramid



The Pyramid Principle

- To ensure robust image registration

Some stones?

Pretty close

Walking distance

From a bird

From space?

Very detailed

Good overview

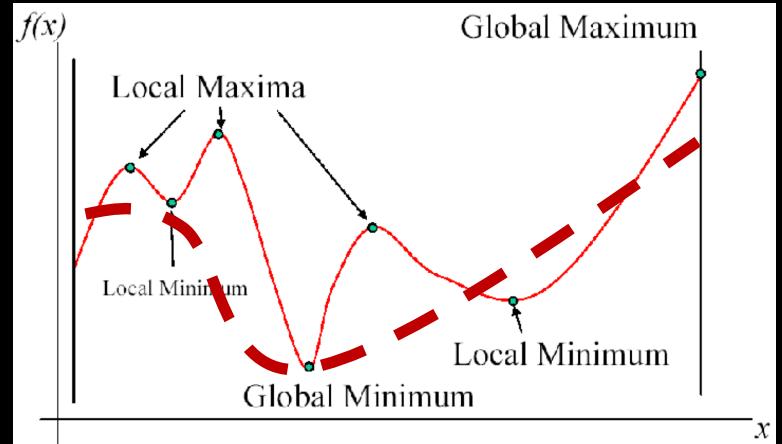
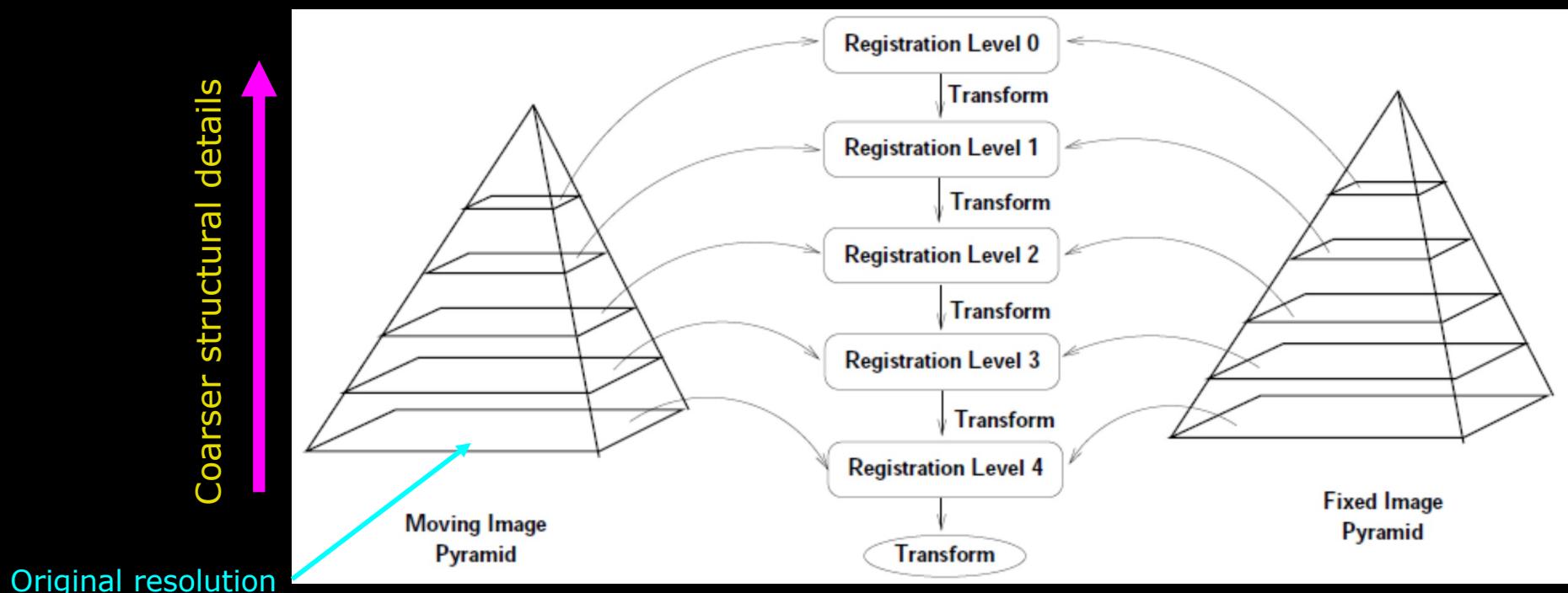
Too coarse

The Pyramid Principle

- To ensure robust image registration

The Pyramid Principle

- A Multi-resolution strategy
- To ensure robust image registration
 - To reduce local minima's
 - What is a proper image resolution level ?



The Pyramid Principle

- Lower image resolution
 - Down sampling (memory reduction, fewer data)
- Less structural details
 - Smoothing (Complex method settings become more general)

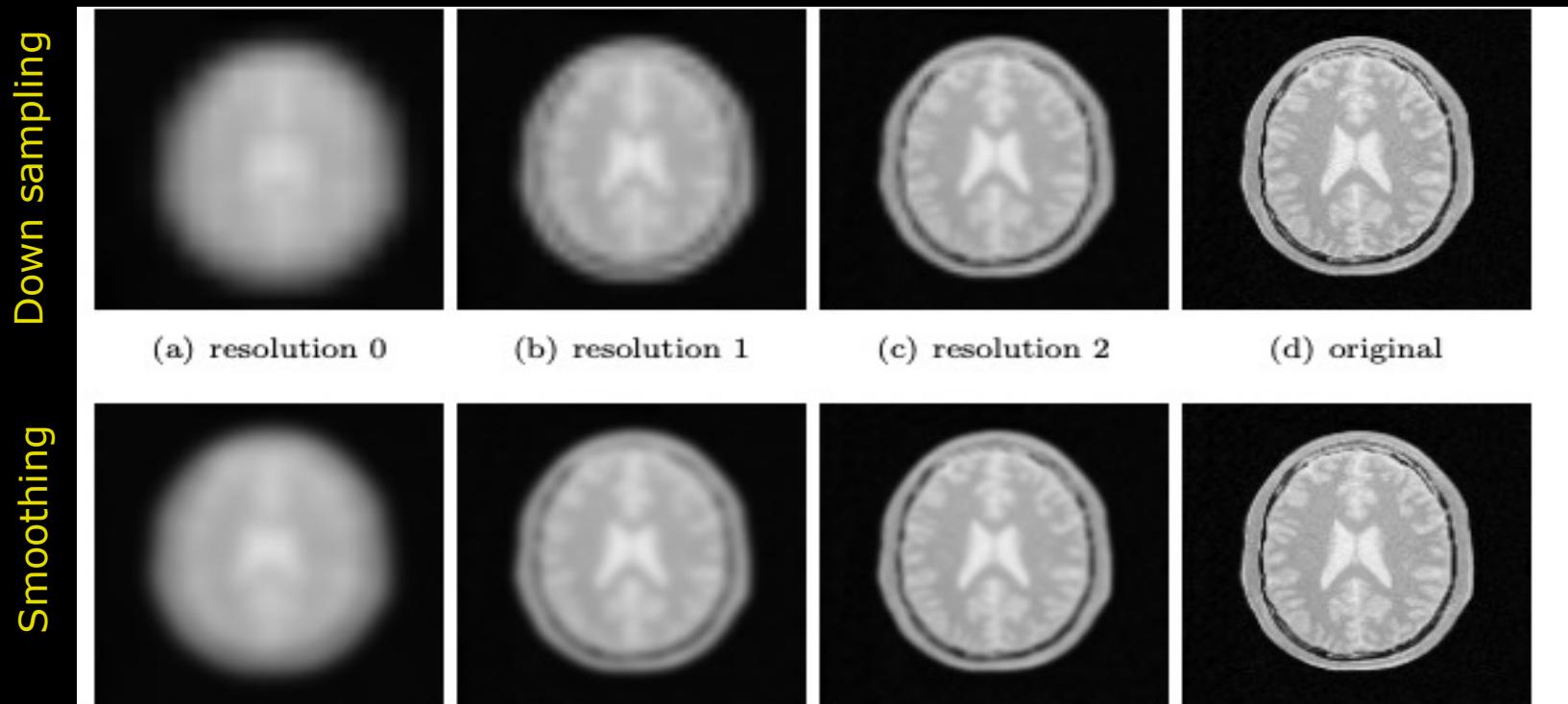
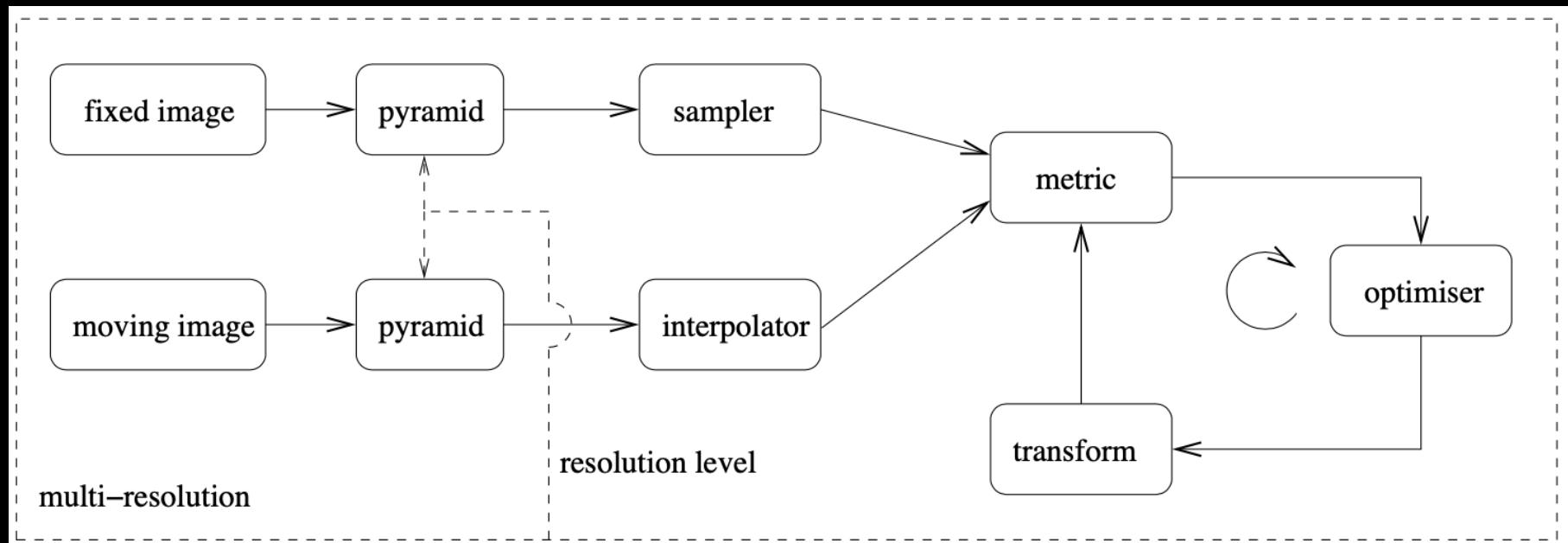


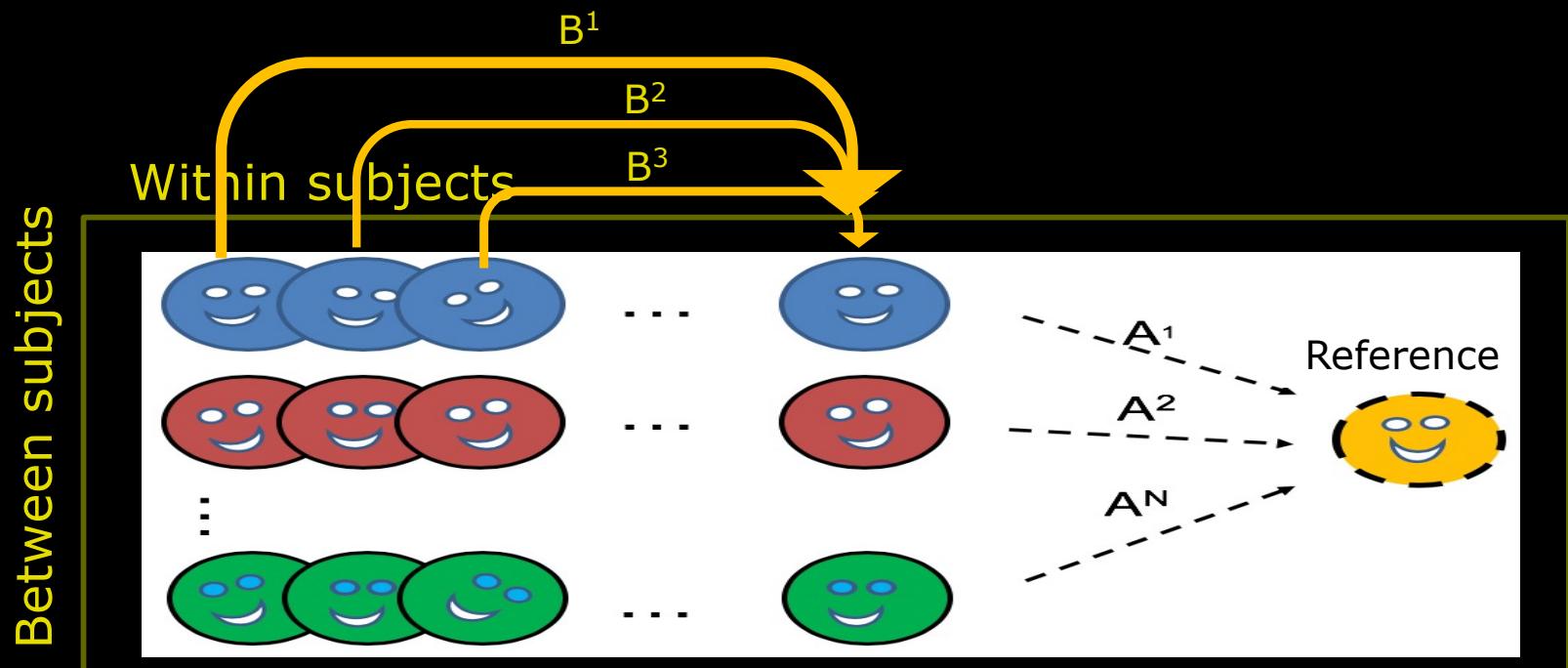
Image Registration pipeline

- At the end we just select an existing tool
- Still, we need how too select method settings ☺
 - This was the first step in the registration pipeline



Combining Image Registration pipelines

- First step : Within subjects (Same structure + temporal)
- Second step: Between subjects (different structure+ temporal)
 - Can use an iterative procedure to improve registration
- Combine subject-wise transformation metrics by **multiplication**
 - Apply only one interpolation at the end to minimise blurring



Quiz 6: Quality inspection - How

How to quality assurance (QA) the image registration results?

- A) Use a similarity measure
- B) Visual inspection
- C) No need it to - just works
- D) Sum of square difference
- E) Search the internet for experience

Image Registration pipeline strategy

- Within subjects and between challenges
 - E.g. Histology 2D → 3D: Structural difference between slices
 - Visually inspect your results!!

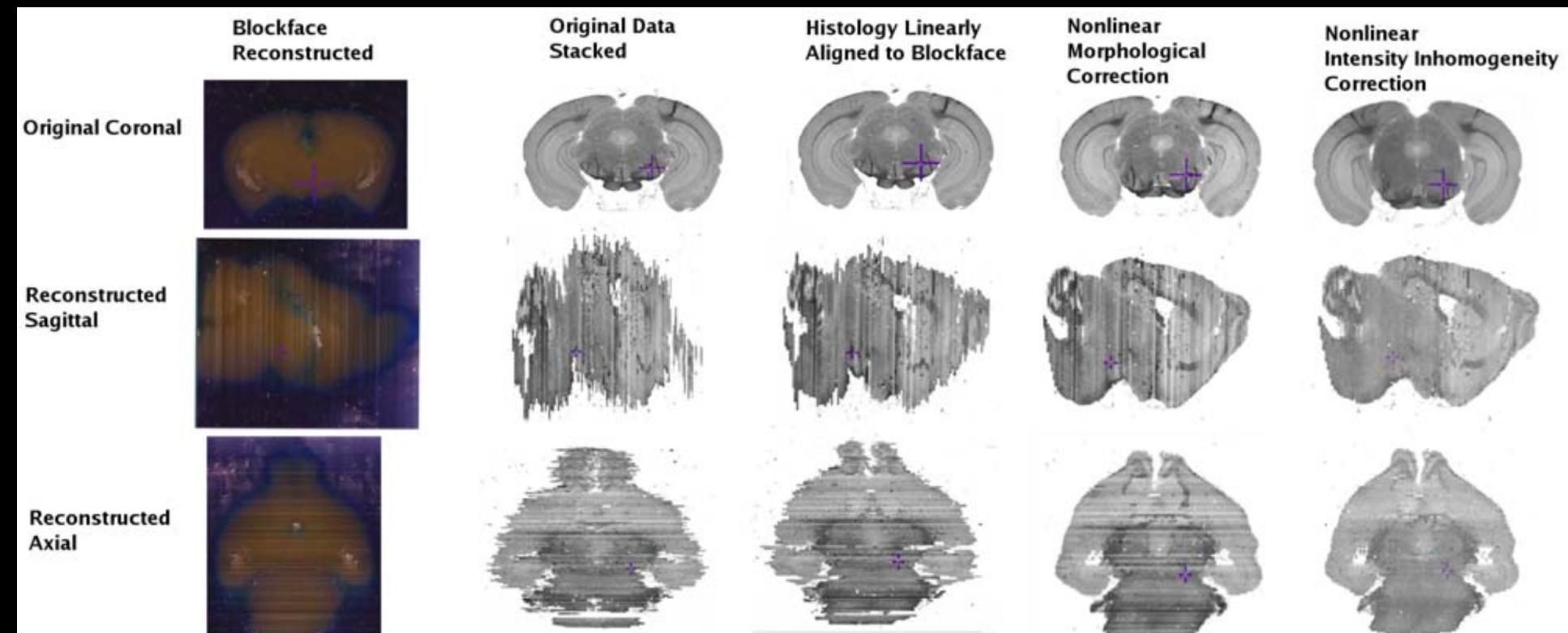
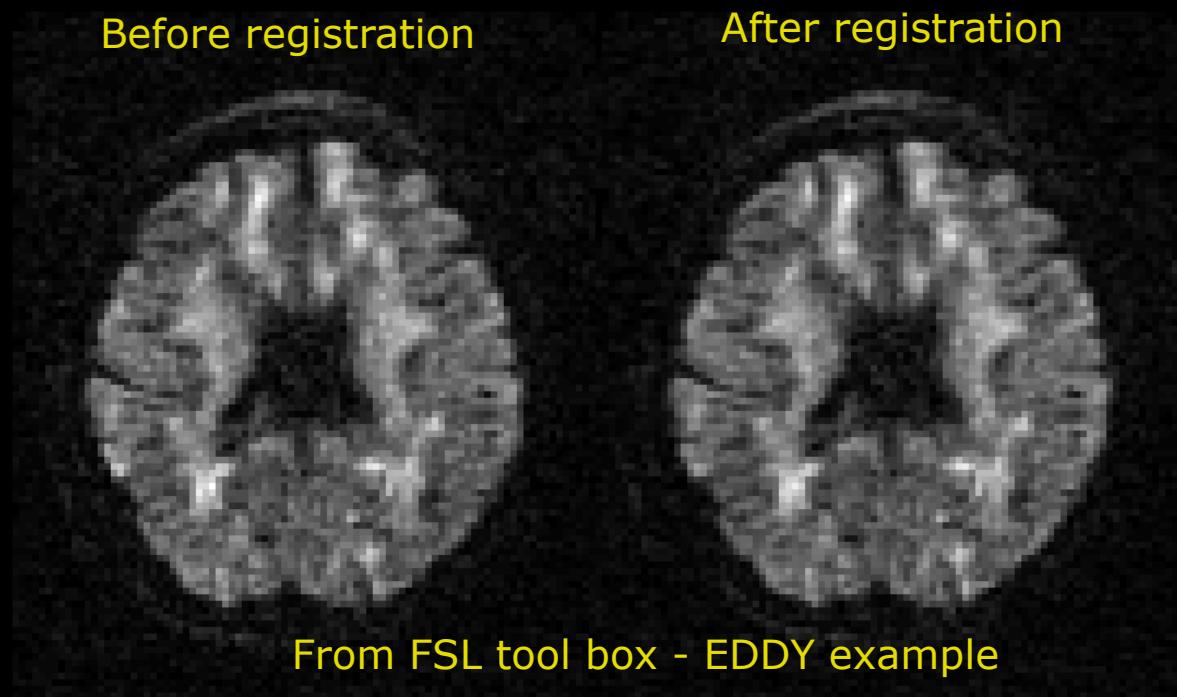


Image Registration pipeline strategy

- Within subjects across time points (temporal)
 - Remove image distortions + subjection motion
- Visually inspect your results!!



What can you do after today?

- Describe difference between a pixel and voxel
- Choose a general image-to-image registration pipeline
- Apply 3D geometrical affine transformations
- Define coordinate system of an object for 3D rotation
- Use the Homogeneous coordinate system to combine transformations
- Compute a suitable intensity-based similarity metric given the image modalities to register
- Compute the normalized correlation coefficient (NNC) between two images
- Compute Entropy
- Describe the concept of iterative optimizers
- Compute steps in the gradient descent optimization algorithm
- Apply the pyramidal principle for multi-resolution strategies
- Select a relevant registration strategy: 2D to 3D, Within- and between objects and moving images

Next week – Real-time face detection using Viola Jones method

