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What can you do after today?

Describe difference between a pixel and voxel

Choose a general image-to-image registration pipeline

Apply 3D geometrical affine transformations

Define coordinate system of an object for 3D rotation

Use the Homogeneous coordinate system to combine transformations

Compute a suitable intensity-based similarity metric given the image
modalities to register

Compute the normalized correlation coefficient (NNC) between two
images

Compute Entropy

Describe the concept of iterative optimizers

Compute steps in the gradient descent optimization algorithm
Apply the pyramidal principle for multi-resolution strategies

Select a relevant registration strategy: 2D to 3D, Within- and between
objects and moving images
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Go to www.menti.com and use the code 4414 1532

Associations to a mountain view

0

D) Danger

paragliding
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Image Registration pipeline

B The input images
- Fixed image: Reference image
- Moving image: Template image

optimiser

transform
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Image volumes
B Image slice: 2D (NxM) matrix of pixels

B Image volumes: 3D (NxMxP) matrix of voxels

- An element is a volume pixel i.e. voxel
B Pixel vs voxel intensity
— Integrated information within an area or volume

2D Slice 3D volume

thickness
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3D image viewing

B Three orthogonal views
— Fine structural details at slice level
— Hard to get 3D surface insight

B Rendering of surfaces

- Surface insight
— Limited types of surfaces to visualise

Slices three orthogonal views
Sagittal Coronal
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DTU Compute 3D rendering

3D image viewing
B Three orthogonal views
— Fine structural details at slice level
— Hard to get 3D surface insight
B Rendering of surfaces
- Surface insight
— Limited types of surfaces to visualise

Coronal

Slices three orthogonal views
Sagittal Coronal

www.dreamstime.com/illustration/truck-top-view.html
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Image volumes
B Stacked slices: 2D to 3D

— Object cut into slices, imaged and stacked
— Still pixels - not voxel

B Registration challenges
— Geometrical distortions between slices

Blockface Original Data
Reconstructed

Original Coronal

- ‘ , |
5 ) : 3 ._‘ : “v
A 1 .
Reconstructed I3 a1
Sagittal 5
t I | '
e 1y 3l
7 !
= - - ~
=

Reconstructed
Axial
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Image volumes

B Intact sample
- No sample cutting

B Registration challenges:
— Stacking 3D volumes

MRI
Whole brain

1 mm isotropic resolution voxels

10 DTU Compute, Technical University of Denmark

Synchrotron x-ray imaging

Tissue sample 1mm

75 nm isotropic resolution voxels

b Tissue sample

Stacked 3D volumes

Axons

= Vessels

Vacuole

XNH Voluines
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Rotating sample in x-ray tomography

Axis of rotation
Flat panel
detector

Image volumes

B Intact sample
- No sample cutting

B Registration challenges:
— Multi image resolution: Fit Region-of-interest image to whole object image

Region of CT of ROI Microscope

CT scanning interest (ROI)

-~

The inspection of a glued joint of a car body

Car door AUDI A8, size: 1150 mm Simon et al, 2006 (ECNDT)
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Image Registration pipeline

B Geometrical transformations

optimiser

Image Analysis — 02503



DTU Compute

Geometric transformations

B Translation
B Rotation

B Scaling

M Shearing

Fixed image (I;)

(Reference image) (Template image)

A\

T = arg mTin C(T; I, Iy)
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TranS|atIOn 2D VS 3D 3D: (X,y,z)—plans
B The image is shifted Ax] - [60
~ 2D: Inspect one slice plan [ ]__[ ]
- 3D:Inspect three slice plans (y,z) -plan (x,2)-plan

20
15

Ay
AVA
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Rotation 3D

B The image is rotated around an origin (e.g. the centre-of-mass)

B Rotate the object around three axis hence three angles.

— Inspect all three views to identify a rotation
Original

Rotated: 27 degree counter-clockwise around only the y-axis
L . X-axis — P

1mage Anaiysis — uz503



DTU Compute

3D Rotation coordinate system

B Three element rotations round the axes of the coordinate system
B Pitch, Yaw and Roll

— Note: Definition of the coordinate system is object specific

Rotation rules

— Counter clock-wise rotations: Right-hand rule (as in figures) €< We use here

— Clock-wise rotations: Left-hand rule

The principal axes of an aircraft
according to the air norm DIN 9300
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3D Rotation coordinate system

Axis-Angle representation

Three composed element rotations
- Angles: a,8 y
— Counter clock-wise rotations (Right-hand rule)

The order matters
— Several Euler-angle conventions exist

Remember: Know your origin!

Axis-Angle representation

1 0 0 cos 3 0 sing cosy  —sinvy
Ry = [0 cosa —sina| Ry= 0 1 0 Ry = |siny  cosvy
0 sina Cos o —sinB 0 cospf 0 0

Roll Pitch
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Euler convention - example
B The intrinsic ZXZ-Euler angle convention (uses the right-hand rule):

— a. Around the z-axis. Defines the line of nodes (N)
- B: Around the new defined by N
- y: Around the new from N

B The order of coordinate system rotations:

— Rotation order around the:

— z-axis: Initial: Original frame (Xx,y,2): a

- : First coordinate system rotation (<,v,7): B |}
- : Second coordinate system rotation (<,Y,7):y

Agp = Rz(y) * Ry(B) * Rz(a)

wikipedia.org/wiki/Euler_angles
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Euler convention — example for a flight

B The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
B Use defined coordinate system for the object
B Rotation order of a flight:

— Yaw: rotation around the Z-axis

— Pitch: Rotation around the Y-axis
— Roll: Rotation around the X-axis

Ar = R;(¥) * Ry(f) * Rx(a)
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Euler convention — example for a head

B The Yaw-Pitch-Roll Euler angle convention (use the right-hand rule)
B Use defined coordinate system for the object
B Rotation order of a human head:

- Yaw: rotation around the Z-axis

— Pitch: Rotation around the X-axis
— Roll: Rotation around the Y-axis

Ar = R;(y) * Rx(F) * Ry (a)
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Quiz 1: Affine 3D transformation

How many parameters?

SOLUTION:
Translation: P=3
Rotation: p=3
Scaling: p=3
Shearing: p=3
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Scaling in 3D

B The size of the image is changed
B Three parameters:
— X-scale factor, S,

- Y-scale factor, S,
- Z-scale factor, S,

M Isotropic scaling:
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Shearing in 3D

B Pixel shifted horizontally or/and vertically
m Three parameters 1 Syx  Szx

A=|Sxy 1 Syz
Sxz Syz 1

Shearing (z,y)-plan
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Combining transformations

P'=A+P

B Rotation, Scale, Shear are
multiplications i.e. P'=A*P

7! Az

y
Z

x' Ax X B Translation is a summation i.e.
Translation: Iy/ _I_[ ]

Rotations, : :
Scaling, Wish: To combine

Shear: transformations via
multiplications:

A= * AR * Ashear* Ag

B Not possible with

24 DTU Compute, Technical University of Denmark
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Homogeneous coordinates

Cartesian coordinates:

Homogeneous coordinates:
p— ’_
!/

!

25 DTU Compute, Technical University of Denmark

B Projective geometry
— Used in computer vision

B Adds an extra dimension to vector,
W:

|x,v,z,w]

B WV scales the x, y and z dimensions
B x,y,zare “correct” when W=1
B How does it work?

Image Analysis — 02503
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Homogeneous coordinates

B Euclidean geometry:
- A pointis (x,y)
- A 2D image
— Cartesian coordinates

www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-
projective—geometry/
26 Image Analysis - 02503
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Homogeneous coordinates

B Euclidean geometry:
- A pointis (x,y)
- A 2D image
— Cartesian coordinates

B Projective geometry:
- A pointis (x,y, W)

— “Projective space” adds an extra
projective dimension, W

- Changing W scale factor:

= No change to the point in
projective space

= Changing perspective/depth

Image Analysis — 02503
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Homogeneous coordinates
B A point in projective space is
(x,y, W)
— Its corresponding Euclidean point is
(X/W,y/W)
B Increasing W (the same x and y)
— The projected point appear closer
to the origin

— The object appear smaller (further
away)

B Scaling to a new depth W’

— Adjusting the point using a scale
factor is W/W i.e., new
distance/old distance:

(x*(W'/W), y*(W'/W), W'))
B When Wor W =1

— a projective coordinate (x,y,1)
corresponds directly to Euclidean

point (x,y)
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Homogeneous coordinates

Example:

B Camara:

- 3 m away from the image, W=3

— The on the image is at (15,21)
B The

IS said to be
- (15, 21, 3)
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Quiz 2: Homogeneous coordinates

A camara is placed at distance
of 3 meter away from the image
and the dot has the projective
coordinate of (15,21,3).

Now we move the camara closer
@@ to the image i.e., 1 m away.

What is the new projective
coordinate?

,7,1)
3) (15,21,3)
SOLUTION: C) (45/63’1)
We move closer to the image i.e. W’ = 1 D) (5,7,033)

which scales with factor (1/3) the projective

point at W=3 accordingly: E) (0,0,0)

(15%(1/3),21*(1/3),1)=(5,7,1)
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Translation transformation as a matrix

B Geometrical transformations
x' X Ax - Use Homogeneous coordinates
Translation: |y'| = [y] + |Ay - Set W=1 we ‘covert’ 3D > 4D space
z' z AV — Translation transformation expressed
as a

In Euclidian space

}

In Projective space
[ x'] X "Ax] Ed X
oy ] |AY
= +
4 AVA
W W w W

= Ar }z] where Ay =

!/
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Transformations in Projective space

Translation:

Rotations (right-hand rule): _ cos(B) 0sin(B) 0 cos(y)—sin(y) 0 0
- x=pitch g — |0 cos(a) —sin(a) of 5 _ 0 1 0 0|p _[sin(y) cos(r) 00
x cos(a) O y —sin(f) 0 cos(B) O "4 0 0 10

- y=roll
- Z=yaw 0 1 0 0 0 1 0 o 01

Sx0 00 Yaw-Pitch-Roll Euler convention
_ _10Syo00
Scaling: ~100Sz0

0001
1 SxySxz0
Sxy 1 Syz0
SxzSyz 1 0
O 0 o0 1

A, =

Affine transformation: A = Ar x (R;™ Ry xR)) * A,* A

Rigid
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Combining transformations — step by step

! X A
1 N Ax Remember:
y’ — Y Y - Typical calculated in
Z ; Az - Same procedure for 2D and 3D images

A
; 4 A; = Step 1:Covert 3D to 4D projective space,

z Az set W=1. Make translation into a matrix
w w

!
!
!

A= A7 * (Ry* Ry, *R,) * A* A = Step 2:Multiply all 4D metrices

= Step 3:Apply the transformation to a point

] = Step 4:Convert back to 3D Cartesian
coordinates by ignoring the W dimension

:A-[y
Z
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Different transformations

B Linear: Affine transformation

B Non-linear: Piece-wise affine or B-spline
- Remember: First to apply the linear transformations!

(f) B-spline
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Image Registration pipeline

B Similarity measures

metrlc

: C
moving image pyramid 1nterpolator
|
|
! resolution level
A

. multi—-resolution
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Similarity measures

B Anatomical Landmarks

— time consuming to obtain positions manually
— Alternative: Joint intensity histogram

Templates
ATIW

Same subject

Same intensity histogram

Reference
AR Same subject

Different intensity histogram

Same subject

Different intensity histogram

MRI scans

DTU Compute, Technical University of Denmark Image Analysis - 02503



DTU Compute

Similarity measure: Mean squared
difference (MSD)

B Compare difference in intensities.

— Same similarity measure we used for anatomical landmarks (positions) in a
previous lecture

— Fast to estimate

B Many local minima’s (sub optimal solutions)
— Intensities are not optimal for this similarity metric

Is T optimal?
NO!

= Big intensity
difference

A high intenslity/ T —— A low itensity
°
X,' T(XI)

.—/

r
-

i s = Large MSD error
Reference/Fixed 7
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Similarity measure: Normalised Cross-
correlation

B Normalised Cross-correlation of intensities in two images
— Fast to estimate

B Risk of local minima’s (sub optimal solutions)
— Less robust if image modalities have different intensity histograms
- Normalise: Reduce the impact of outlier regions

> (Ir(z:) = Ir) (Im(Tu(z:)) = In)
NCC(p; I, In) = ' m_.»._suv _ =

Ir)” Y (IM(Tu(zi)) — In)”

T ENp

with the average grey-values Ip = e % Y, In(Tu(ms))-

= Multiplication is a dot product Iy(T)
= Ip - Iy(T) = |l [11m(T)]l cos 6

Ir
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Joint intensity histograms

= Perfect registered: Optimal joint intensity agreement
Scatter T1vs T1

>
et
©
g
o
£
0]
o
©
£
0]
£
©
0p)

50 100 150 200 50 100 150 200 ‘ 400 600

ImgT1 .. Scatter Tl vs T2

Different image modality

100 150 200 50 100 150 200 i J0 400 600
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Joint intensity histograms

= Small translation difference: Lower joint intensity agreement
ImgT1+[5,5] 8L,_JGS::atter T1 vs T1+[5,5]

>
et
©
g
o
£
0]
o
©
£
0]
£
©
0p)

100 150 200 50 100 150 200

ImgT1 ImgT2+[5,5] JGGScatter Tl vs T2+[5,5]

100 150 200 50 100 150 200

Different image modality
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Similarity measure - Entropy

B Comes from information theory.
- The higher the entropy the more the information content.

B Entropy (Shannon-Weiner):

H= -).;pilogy D
Where b: the base of the logarithm

- Bits: b=2 and bans: b=10
- Entropy is typically in bits i.e. typical used in digital information

Entropy=3.00 Entropy=2.99 Entropy=-0.00
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Quiz 3: Highest entropy?

I went to the candy shop and wanted
to select the cady mixture that has
the highest entropy. Each candy
mixture include in total 27 pieces.

Which one should I select? .
Candy mix 2

‘A) Mix 1
B) Make a new choice
C) Contain no liquorice
D) Mix 2
E) It is not healthy
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Quiz 4:What is the entropy of the candy mix 1?

Candy mix 1

A) 0.38 SOLUTION:
Green=13
0'99 Pi;eke=n14
C) 0.45 Total=27
D) 0.23 bG=13/27

E) 0.00 pP=14/27
Entropy= -pG*log,(pG)-pP*log,(pP)=0.99
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Histograms of images

J“l"h e

&Y > ‘ .
-~ ) | l
LRSI Ik . Lo

L Ll..-...lh - Ilmdu..l,.l th. ...lL
- IIM.U. |.|]LI|I‘|I.- - Ll |,
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Joint entropy - Mutual information
m Joint entropy H(X,Y)=- XxyPxylog pxy

B Similarity measure: The more similar the distributions, the

lower the joint entropy compared to the sum of the individual
entropies i.e., total area is less spread out

H(X,Y)< HX) + H(Y)

.\ Example Of rOtat|On (PIuim et aI., 2003 TMI) en.wikipedia.org/wiki/Mutual_information

N ~ -

3.82 6.79 6.98 7.15

0 degrees 2 degrees 5 degrees 10 degrees
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Contrast in joint histograms

B The histogram of the two images must reflect contrast to
similar structures for image registration to be successful

Scatter Tlvs T2

50 100 150 200 50 100 150 200 0 200 400 600
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Image Registration pipeline

B The optimiser
- How to find the transformation parameters?

optimiser

Image Analysis — 02503
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The optimizer

B We have an describing:

— A cost function (C) based on a similarity metric
= Quantifying how well a geometrical transformation (T(w)) maps an
image (moving, Iy) into another (fixed, Ig)

B Hence, a good match is a minimum difference:

T = argmin C(T; Ip, In)
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The parameters

B The parameters is a vector
with p elements

B The type of transformation and
the dimension of the dataset set
the number of parameters

- Translation p = 2 or 3 (3D)
— Rotation p = 1 or 3 (3D)
- Scalingp =1

w € RP
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Optimization by minimization

B Find the parameter set that minimizes the objective function

B How to find the solution?

— Analytical: Works fine for translation (previous lecture)
— Numerical: Iterative approaches to search for affine transformations

To find: w =argminC

w

We simply differentiate w.r.t. w:

6C_
ow

0
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The challenge
B w span a p-dimensional space w=[w; W, ...,W,]T

B Complex parameter space with many data points
- Finding the lowest place in mountains

Global Maximum

|.ocal Maxima

/\

[.ocal Minimum

. Local Minimum
Global Mimmimum
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Iterative optimisation Ny

B Aim: Find in parameter space w: Five 0 i.e. a global minima

w
— Search all possible combinations of w? (not a good idea)
— Systematically search the parameter space = Good idea

B [terative optimisation strategies
— Step-wise searching the parameter space

B Many methods exist Contour plot of 2D parameter space (wl,w2)

>

— Gradient based
— Genetic evolution

Image Analysis — 02503
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Gradient descent

B Definition: C(w) is differentiable in neighbourhood of a point w,
B C(w) decreases in the negative gradient direction of w,,.
B Wy = wy —yVE(wy)

- VC(w,): Gradient direction at point w,

- y: Step length --> If small enough: C(w,) = C(w,,41)

Procedure:
0) Define a step length

[nitial

VC(wg) 1) Start guess of a position

2) Find gradient
3) Take a step

VC(w1) 4) Repeat 2)+3)

/ 5) Solution: Global minima

= Minimum Cost aC

Derivative of Cost P VC(Wn+1) - % ~0
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1+ 6X; Iteration:1
Step length: y=0.1;

Max steps: 1000

Start position: xg=[1,1]7

From a Matlab function: grad_descent.m
By James T. Allison
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1+ 6X; Iteration:2
Step length: y=0.1;

Max steps: 1000

Start position: xg=[1,1]7

Image Analysis — 02503
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1+ 6X; Iteration:3
Step length: y=0.1;

Max steps: 1000

Start position: xg=[1,1]7

Image Analysis — 02503
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2x1 + xz]
X1 + 6x; Iteration:37 (final)
Step length: y=0.1;

Max steps: 1000

Start position: xg=[1,1]7
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

le + )
X1 + 6X2

Gradient at point x,;: —VC(x,) = _[

Iteration:31 (final)
Step length: y=0.1;

Max steps: 1000

Start position: xy=[0,-1]7

Can find solution from any place
No local minima’s nearby
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Gradient descent

Cost function:C(x) = x? + x;x, + 3x5

2x1 + xz]
X1 + 6x2

Gradient at point x,: +VC(x,) = +l

Step length: y=0.1;
Max steps: 1000
Start position: x¢=[0.5,0.5]T

If use positive gradient
~  WRONG DIRECTION!

Image Analysis — 02503
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1 + 6% Iteration:1000 (final)
Step length: y=0.0001;

Max steps: 1000

Start position: xg=[1,1]7

Too small step size —many steps

Do not find a solution
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Gradient descent

Cost function:C(x) = x? + x;x, + 3x5

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1 + 6x,
Step length: y=0.2 (optimal)

Max steps: 1000

Start position: xg=[1,1]7

Few steps: Optimal step size

Iteration:17 (final)
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

Gradient at point x,;: —VC(x,) = _[

2xq + xz]
X1+ 6X; Iteration:65 (final)
Step length: y=0.3

Max steps: 1000

Start position: xg=[1,1]7

Too large step size — unstable

Sensitive to local minima’s

Solution: Dynamic step length
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Gradient descent

B Cost function:C(x) = x? + x;x, + 3x3

le + )
X1 + 6X2

Gradient at point x,;: —VC(x,) = _[

Iteration:1000 (final)
Step length: y=0.1

Max steps: 1000
Start position: xg=[1,1]7
Noisy data: Cannot find optimum
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Quiz 5:What is the updated position xnew?

Model fitting uses a cost function: C(x) = x# + x;x, + 3x2
and an iterative optimizer Gradient descent with a step length of 0.2

What is the new position of xnew =[?,?]" after one step from position x=[1, 0]?

Solution:
1) Calculate the gradient for x=[1,0]"

A) [0.3,2.3]7 - differentiate C: VC(x) = chfljéﬂ
B) :-1 ; 0.3]7 ve([1,01M)= [21]

i 2) Update the step: X,.n=X- VC*stepLength
C) -1'4’0'2]T xnew=[1,0]™-0.2*[2,1]"=[0.6, -0.2]"
[0.6,-0.2]T

EY [5.2,2.2]

65 DTU Compute, Technical University of Denmark
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Image Registration pipeline

B The sampler

- How many data points for a robust similarity measure?

optimiser

transform
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The sampler

B Calculating the similarity metrics:

- Summing over all pixels/voxels in an image is VERY time
consuming

B Selecting a sparse sampling strategy

— Reducing CPU load and reduce memory load when
— Efficient selection of image points

Image Analysis — 02503
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DTU Compute 8Socoati:eerl vs T1+[5,5]

All samples

The sampler IR R
B Sparser sampling: Similar scatter plot
- Define a good compromise (sample the whole image)

B Ordered vs Random

— Spatial dependency: Dependent on large homogeneous structures
— Very sparse sampling: Risk not sampling small structures

Random

ImgT1+[5,5] 8Sot(:Jatter T1 vs T1+[5,5] ImgT1+[5,5] 8%%atter T1 vs T1+[5,5]

Every 2nd

50 100 150 200

ImgT1+[5,5] 8%%atter T1 vs T1+[5,5]

Every 10th

0
50 100 150 200 50 100 150 200 2 50 100 150 200 50 100 150 200
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Image Registration pipeline

B Interpolation

— To map the intensities from the template image to the grid
of the reference image via a transformation matrix

. optimiser
= interpolator

resolution level transform

Image Analysis — 02503



DTU Compute

A FLASH BACK to a previous Lecture:
Forward vs Backward mapping

B In a nutshell
- Going backward we need to invers the transformation

Template Reference

Forward
mapping

Backward
mapping
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Interpolation methods

B Enhances structural boundaries

— Higher-order interpolation methods: Reduce blurring
B May visually appear “sharper”

— Do not change the image information!

— Only if combining interpolated images w. different information of the
same object - e.qg. different angles of moving object e.g. car

- Super resolution (another topic)

(a) (b) (c) (d) (e)

Figure 2.4: Interpolation. (a) nearest neighbour, (b) linear, (c) B-spline N = 2, (d) B-spline N = 3, (e)
-spline N = 5.
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Image Registration pipeline

B Pyramid

sampler
| |
| |
|
\ = v | >
R optimiser
moving image pyramid interpolator

transform

resolution level
i multi—resolution

- - - - = - - =
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The Pyramid Principle

B To ensure robust image registration

Some stones?  Pretty close Walking distance From a bird From space?

|
Very detailed Good overview

Too coarse
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The Pyramid Principle

B To ensure robust image registration

Some stones?  Pretty close Walking distance From a bird From space?

|
Very detailed Good overview

Too coarse
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Global Maximum

l.ocal Maxima

The Pyramid Principle </
»

B A Multi-resolution strategy Lo ity

. . . -
B To ensure robust image registration N\ T Local Minimum

L ; Global Minimum
— To reduce local minima's
- What is a prober image resolution level ?

Registration Level 0
ITransform

- Registration Level 1
\ Transform

*| Registration Level 2
l Transform

Registration Level 3 -

l Transform

' Registration Level 4

u
'©
i)
()
©
(©
| .
-
)
O
-
| -
)
wn
| -
(O]
[0)]
| -
(0]
(@]
@)

Fixed Image

Moving Image l Pyramid

Pyramid Transform
Original resolution
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The Pyramid Principle

B Lower image resolution
- Down sampling (memory reduction, fewer data)
M Less structural details
- Smoothing (Complex method settings become more general)

(@)
=
a

=

©

n

c

=

o
o)

(a) resolution 0O (b) resolution 1 (c¢) resolution 2

Smoothing
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Image Registration pipeline

B At the end we just select an existing tool

B Still, we need how too select method settings ©
- This was the first step in the registration pipeline

optimiser

' resolution level transform
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Combining Image Registration pipelines
B First step : Within subjects (Same structure + temporal)

B Second step: Between subjects (different structure+ temporal)
— Can use an iterative procedure to improve registration

B Combine subject-wise transformation metrics by multiplication
= Apply only one interpolation at the end to minimise blurring

Between subjects
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Quiz 6: Quality inspection - How

How to quality assurance (QA) the image registration results?

ﬂ se a similarity measure

S
m isual inspection
C) No need it to - just works

um of square difference
<> . .
earch the internet for experience
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Image Registration pipeline strategy

B Within subjects and between challenges

- E.g. Histology 2D > 3D: Structural difference between slices
— Visually inspect your results!!

Blockface Original Data Histology Linearly Nonlinear
Reconstructed Stacked Aligned to Blockface Morphological
Correction

Nonlinear

Intensity Inhomogeneity
Correction

Original Coronal

Reconstructed
Axial

Reconstructed
Sagittal
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Image Registration pipeline strategy

B Within subjects across time points (temporal)
- Remove image distortions + subjection motion

B Visually inspect your results!!

Before registration After registration

: a g
| | 3 -L i In
T
Mo U

From FSL tool box - EDDY example
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What can you do after today?

Describe difference between a pixel and voxel

Choose a general image-to-image registration pipeline

Apply 3D geometrical affine transformations

Define coordinate system of an object for 3D rotation

Use the Homogeneous coordinate system to combine transformations

Compute a suitable intensity-based similarity metric given the image
modalities to register

Compute the normalized correlation coefficient (NNC) between two
images

Compute Entropy

Describe the concept of iterative optimizers

Compute steps in the gradient descent optimization algorithm
Apply the pyramidal principle for multi-resolution strategies

Select a relevant registration strategy: 2D to 3D, Within- and between
objects and moving images
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Next week — Real-time face detection using
Viola Jones method
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